Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
WACV 20222022Temporal action segmentation is a task to classify each frame in the video with an action label. However, it is quite expensive to annotate every frame in a large corpus of videos to construct a comprehensive supervised training dataset. Thus in this work we propose an unsupervised method, namely SSCAP, that operates on a corpus of unlabeled videos and predicts a likely set of temporal segments across the
-
4th Symposium on Advances in Approximate Bayesian Inference2022Bayesian inference is intractable for most practical problems and requires approximation schemes with several trade-offs. Variational inference provides one of such approximations which, while powerful, has thus far seen limited use in high-dimensional applications due to its complexity and computational cost. This paper introduces a scalable, theoretically grounded, and simple-to-implement algorithm for
-
AAAI 20222022Transformers are state-of-the-art in a wide range of NLP tasks and have also been applied to many real-world products. Understanding the reliability and certainty of transformer model predictions is crucial for building trustable machine learning applications, e.g., medical diagnosis. Although many recent transformer extensions have been proposed, the study of the uncertainty estimation of transformer models
-
ICON 20212022Text Style Transfer (TST) aims to alter the underlying style of the source text to another specific style while keeping the same content. Due to the scarcity of high-quality parallel training data, unsupervised learning has become a trending direction for TST tasks. In this paper, we propose a novel VAE based Text Style Transfer with pivOt Words Enhancement leaRning (VT-STOWER) method which utilizes Variational
-
ICML 2021, AAAI 20212021Attribution methods have been shown as promising approaches for identifying key features that led to learned model predictions. While most existing attribution methods rely on a baseline input for performing feature perturbations, limited research has been conducted to address the baseline selection issues. Poor choices of baselines limit the ability of one-vs-one explanations for multi-class classifiers
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all