Customer-obsessed science
Research areas
-
November 28, 20254 min readLarge language models are increasing the accuracy, reliability, and consistency of the product catalogue at scale.
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
Featured news
-
USENIX ATC 20222022Amazon DynamoDB is a NoSQL cloud database service that provides consistent performance at any scale. Hundreds of thousands of customers rely on DynamoDB for its fundamental properties: consistent performance, availability, durability, and a fully managed serverless experience. In 2021, during the 66-hour Amazon Prime Day shopping event, Amazon systems - including Alexa, the Amazon.com sites, and Amazon
-
APSys Workshop on Systems2022Convolutional Neural Networks (CNNs) are widely used in real world applications, e.g, computer vision. Winograd based convolution are usually applied due to its low computation complexity. For the underling hardware, ARM many-core CPUs, by their price performance, are favored by cloud providers like Amazon Web Services (AWS). However, existing Winograd convolution implementations for ARM architecture are
-
RLDM 2022 Workshop2022We study task-agnostic continual reinforcement learning (TACRL) in which standard RL challenges are compounded with partial observability stemming from ask agnosticism, as well as additional difficulties of continual learning (CL), i.e., learning on a non-stationary sequence of tasks. Here we compare TACRL methods with their soft upper bounds prescribed by previous literature: multi-task learning (MTL)
-
TSD 20222022We propose a novel approach for semi-supervised learning (SSL) designed to overcome distribution shifts between training and real-world data arising in the keyword spotting (KWS) task. Shifts from training data distribution are a key challenge for real-world KWS tasks: when a new model is deployed on device, the gating of the accepted data undergoes a shift in distribution, making the problem of timely
-
TSD 20222022We propose a novel 2-stage sub 8-bit quantization aware training algorithm for all components of a 250K parameter feedforward, streaming, state-free keyword spotting model. For the 1st-stage, we adapt a recently proposed quantization technique using a non-linear transformation with tanh(.) on dense layer weights. In the 2nd-stage, we use linear quantization methods on the rest of the network, including
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all