Lessons learned from 10 years of DynamoDB

Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

Amazon DynamoDB is one of the most popular NoSQL database offerings on the Internet, designed for simplicity, predictability, scalability, and reliability. To celebrate DynamoDB’s 10th anniversary, the DynamoDB team wrote a paper describing lessons we’d learned in the course of expanding a fully managed cloud-based database system to hundreds of thousands of customers. The paper was presented at this year’s USENIX ATC conference.

The paper captures the following lessons that we have learned over the years:

  • Designing systems for predictability over absolute efficiency improves system stability. While components such as caches can improve performance, they should not introduce bimodality, in which the system has two radically different ways of responding to similar requests (e.g., one for cache misses and one for cache hits). Consistent behaviors ensure that the system is always provisioned to handle the unexpected. 
  • Adapting to customers’ traffic patterns to redistribute data improves customer experience. 
  • Continuously verifying idle data is a reliable way to protect against both hardware failures and software bugs in order to meet high durability goals. 
  • Maintaining high availability as a system evolves requires careful operational discipline and tooling. Mechanisms such as formal proofs of complex algorithms, game days (chaos and load tests), upgrade/downgrade tests, and deployment safety provide the freedom to adjust and experiment with the code without the fear of compromising correctness. 
Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Before we dig deeper into these topics, a little terminology. A DynamoDB table is a collection of items (e.g., products), and each item is a collection of attributes (e.g., name, price, category, etc.). Each item is uniquely identified by its primary key. In DynamoDB, tables are typically partitioned, or divided into smaller sub-tables, which are assigned to nodes. A node is a set of dedicated computational resources — a virtual machine — running on a single server in a datacenter.

DynamoDB stores three copies of each partition, in different availability zones. This makes the partition highly available and durable because the availability zones’ storage resources share nothing and are substantially independent. For instance, we wouldn’t assign a partition and one of its copies to nodes that share a power supply, because a power outage would take both of them offline. The three copies of the same partition are known as a replication group, and there is a leader for the group that is responsible for replicating all the customer mutations and serving strongly consistent reads.

DynamoDB architecture.png
The DynamoDB architecture, including a request router, the partition metadata system, and storage nodes in different availability zones (AZs).

Those definitions in hand, let’s turn to our lessons learned.

Predictability over absolute efficiency

DynamoDB employs a lot of metadata caches in order to reduce latency. One of those caches stores the routing metadata for data requests. This cache is deployed on a fleet of thousands of request routers, DynamoDB’s front-end service.

In the original implementation, when the request router received the first request for a table, it downloaded the routing information for the entire table and cached it locally. Since the configuration information about partition replicas rarely changed, the cache hit rate was approximately 99.75%.

Related content
How Alexa scales machine learning models to millions of customers.

This was an amazing hit rate. However, on the flip side, the fallback mechanism for this cache was to hit the metadata table directly. When the cache becomes ineffective, the metadata table needs to instantaneously scale from handling 0.25% of requests to 100%. The sudden increase in traffic can cause the metadata table to fail, causing cascading failure in other parts of the system. To mitigate against such failures, we redesigned our caches to behave predictably.

First, we built an in-memory datastore called MemDS, which significantly reduced request routers’ and other metadata clients’ reliance on local caches. MemDS stores all the routing metadata in a highly compressed manner and replicates it across a fleet of servers. MemDS scales horizontally to handle all incoming requests to DynamoDB.

Second, we deployed a new local cache that avoids the bimodality of the original cache. All requests, even if satisfied by the local cache, are asynchronously sent to the MemDS. This ensures that the MemDS fleet is always serving a constant volume of traffic, regardless of cache hit or miss. The regular exercise of the fallback code helps prevent surprises during fallback.

DDB-MemDS.png
DynamoDB architecture with MemDS.

Unlike conventional local caches, MemDS sees traffic that is proportional to the customer traffic seen by the service; thus, during cache failures, it does not see a sudden amplification of traffic. Doing constant work removed the need for complex logic to handle edge cases around cache misses and reduced the reliance on local caches, improving system stability.

Reshaping partitioning based on traffic

Partitions offer a way to dynamically scale both the capacity and performance of tables. In the original DynamoDB release, customers explicitly specified the throughput that a table required in terms of read capacity units (RCUs) and write capacity units (WCUs). The original system assigned partitions to nodes based on both available space and computational capacity.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

As the demands on a table changed (because it grew in size or because the load increased), partitions could be further split to allow the table to scale elastically. Partition abstraction proved really valuable and continues to be central to the design of DynamoDB.

However, the early version of DynamoDB assigned both space and capacity to individual partitions on the basis of size, evenly distributing computational resources across table entries. This led to challenges of “hot partitions” and throughput dilution.

Hot partitions happened because customer workloads were not uniformly distributed and kept hitting a subset of items. Throughput dilution happened when partitions that had been split to handle increased load ended up with so few keys that they could quickly max out their meager allocated capacity.

Our initial response to these challenges was to add bursting and adaptive capacity (along with other features such as split for consumption) to DynamoDB. This line of work also led to the launch of on-demand tables.

Bursting is a way to absorb temporal spikes in workloads at a partition level. It’s based on the observation that not all partitions hosted by a storage node use their allocated throughput simultaneously.

Related content
Amazon researchers describe new method for distributing database tables across servers.

The idea is to let applications tap into unused capacity at a partition level on a best-effort basis to absorb short-lived spikes. DynamoDB still maintains workload isolation by ensuring that a partition can burst only if there is unused throughput at the node level.

DynamoDB also launched adaptive capacity to handle long-lived spikes that cannot be absorbed by the burst capacity. Adaptive capacity monitors traffic patterns and repartitions tables so that heavily accessed items reside on different nodes.

Both bursting and adaptive capacity had limitations, however. Bursting was helpful only for short-lived spikes in traffic, and it was dependent on nodes’ having enough throughput to support it. Adaptive capacity was reactive and kicked in only after transmission rates had been throttled down to avoid overloads.

To address these limitations, the DynamoDB team replaced adaptive capacity with global admission control (GAC). GAC builds on the idea of token buckets, in which bandwidth is allocated to network nodes as tokens, and the nodes “cash in” tokens in order to transmit data. Each request router maintains a local token bucket and communicates with GAC to replenish tokens at regular intervals (on the order of every few seconds). For an extra layer of defense, DynamoDB also uses token buckets at the partition level.

Continuous verification 

To provide durability and crash recovery, DynamoDB uses write-ahead logs, which record data writes before they occur. In the event of a crash, DynamoDB can use the write-ahead logs to reconstruct lost data writes, bringing partitions up to date.

Write-ahead logs are stored in all three replicas of a partition. For higher durability, the write-ahead logs are periodically archived to S3, an object store that is designed for more than 99.99% (in fact, 11 nines) durability. Each replica contains the most recent write-ahead logs, which are usually waiting to be archived. The unarchived logs are typically a few hundred megabytes in size.

Storage replica vs. log replica.png
Healing a storage replica by copying the B-tree can take several minutes, while adding a log replica, which takes only a few seconds, ensures that there is no impact on durability.

DynamoDB continuously verifies data at rest. Our goal is to detect any silent data errors or “bit rot” — bit errors caused by degradation of the storage medium. An example of continuous verification is the scrub process.

The scrub process verifies two things: that all three copies in a replication group have the same data and that the live replicas match a reference replica built offline using the archived write-ahead-log entries.

The verification is done by computing the checksum of the live replica and matching that with a snapshot of the reference replica. A similar technique is used to verify replicas of global tables. Over the years, we have learned that continuous verification of data at rest is the most reliable method of protecting against hardware failures, silent data corruption, and even software bugs.

Availability

DynamoDB regularly tests its resilience to node, rack, and availability zone (AZ) failures. For example, to test the availability and durability of the overall service, DynamoDB performs power-off tests. Using realistic simulated traffic, a job scheduler powers off random nodes. At the end of all the power-off tests, the test tools verify that the data stored in the database is logically valid and not corrupted.

Related content
Amazon Athena reduces query execution time by 14% by eliminating redundant operations.

The first point about availability is that it needs to be measurable. DynamoDB is designed for 99.999% availability for global tables and 99.99% availability for regional tables. To ensure that these goals are being met, DynamoDB continuously monitors availability at the service and table levels. The tracked availability data is used to estimate customer-perceived availability trends and trigger alarms if the number of errors that customers see crosses a certain threshold.

These alarms are called customer-facing alarms (CFAs). The goal of these alarms is to report any availability-related problems and proactively mitigate them either automatically or through operator intervention. The key point to note here is that availability is measured not only on the server side but on the client side.

We also use two sets of clients to measure the user-perceived availability. The first set of clients is internal Amazon services using DynamoDB as the data store. These services share the availability metrics for DynamoDB API calls as observed by their software.

The second set of clients is our DynamoDB canary applications. These applications are run from every AZ in the region, and they talk to DynamoDB through every public endpoint. Real application traffic allows us to reason about DynamoDB availability and latencies as seen by our customers. The canary applications offer a good representation of what our customers might be experiencing both long and short term.

The second point is that read and write availability need to be handled differently. A partition’s write availability depends on the health of its leader and of its write quorum, meaning two out of the three replicas from different AZs. A partition remains available as long as there are enough healthy replicas for a write quorum and a leader.

Related content
“Anytime query” approach adapts to the available resources.

In a large service, hardware failures such as memory and disk failures are common. When a node fails, all replication groups hosted on the node are down to two copies. The process of healing a storage replica can take several minutes because the repair process involves copying the B-tree — a data structure that maps partitions to storage locations — and write-ahead logs.

Upon detecting an unhealthy storage replica, the leader of a replication group adds a log replica to ensure there is no impact on durability. Adding a log replica takes only a few seconds, because the system has to copy only the most recent write-ahead logs from a healthy replica; reconstructing the more memory-intensive B-tree can wait. Quick healing of affected replication groups using log replicas thus ensures the high durability of the most recent writes. Adding a log replica is the fastest way to ensure that the write quorum of the group is always met. This minimizes disruption to write availability due to an unhealthy write quorum. The leader replica serves consistent reads.

Introducing log replicas was a big change to the system, but the Paxos consensus protocol, which is formally provable, gave us the confidence to safely tweak and experiment with the system to achieve higher availability. We have been able to run millions of Paxos groups in a region with log replicas. Eventually, consistent reads can be served by any of the replicas. In case a leader fails, other replicas detect its failure and elect a new leader to minimize disruptions to the availability of consistent reads.

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE