The engineering behind Alexa's contextual speech recognition

How Alexa scales machine learning models to millions of customers.

Automatic speech recognition (ASR) is the conversion of acoustic speech to text, and with Alexa, the core ASR model for any given language is the same across customers.

But one of the ways the Alexa AI team improves ASR accuracy is by adapting models, on the fly, to customer context. For instance, Alexa can use acoustic properties of the speaker’s voice during the utterance of the wake word “Alexa” to filter out background voices when processing the customer’s request.

Echo Studio.png
Alexa's automatic speech recognition uses customer and device context to improve performance.

Alexa can also use the device context to improve performance. For instance, a device with a screen might display a list of possible responses to a query, and Alexa can bias the ASR model toward the list entries when processing subsequent instructions.

Recently, Alexa also introduced a context embedding service, which uses a large neural network trained on a variety of tasks to produce a running sequence of vector representations — or embeddings — of the past several rounds of dialogue, both the customer’s utterances and Alexa’s responses.

The context embeddings are an on-tap resource for any Alexa machine learning model, and the service can be expanded to include other types of contextual information, such as device type, customers’ skill and content preferences, and the like.

Theory into practice

At Amazon Science, we report regularly on the machine learning models — including those that use context — that enable improvements to Alexa’s speech recognizer. But rarely do we discuss the engineering effort required to bring those models into production.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

To get a sense for the scale of that effort, consider just one of Alexa’s deployed context-aware ASR models, which uses conversational context to improve accuracy when Alexa asks follow-up questions to confirm its understanding of commands. For instance:

Customer: “Alexa, call Meg.”
Alexa: “Do you mean Meg Jones or Meg Bauer?”
Customer: “Bauer.”

When Alexa hears “Bauer” in the second dialogue turn, it favors the interpretation “Bauer” over the more common “power” based on the context of the previous turn. On its initial deployment, conversational-context awareness reduced the ASR error rate during such interactions by almost 26%.

The underlying machine learning model factors in the current customer utterance, the text of the previous dialogue turn (both the customer’s utterance and Alexa’s response), and relevant context information from the Alexa services invoked by the utterance. This might include entries from an address book, a list of smart-home devices connected to Alexa, or the local-search function’s classification of names the customer mentioned — names of restaurants, of movie theaters, of gas stations, and so on.

But once the model has been trained, the engineers’ work is just beginning.

Problems of scale

The first engineering problem is that there’s no way to know in advance which interactions with Alexa will require follow-up questions and responses. Embedding context information is a computationally intensive process. It would be a waste of resources to subject all customer utterances to that process, when only a fraction of them might lead to multiturn interactions.

Instead, Alexa temporarily stores relevant context information on a server; utterances are time stamped and are automatically deleted after a fixed span of time. Only utterances that elicit follow-up questions from Alexa pass to the context embedding model.

Related content
New approach improves F1 score of clarification questions by 81%.

For storage, the Alexa engineers are currently using AWS’s DynamoDB service. Like all of AWS’s storage options, DynamoDB encrypts the data it stores, so updating an entry in a DynamoDB table requires decrypting it first.

The engineering team wanted to track multiple dialogue events using only a single table entry; that way, it would be possible to decide whether or when to begin a contextual embedding with a single read operation.

If the contextual data were stored in the same entry, however, it would have to be decrypted and re-encrypted with every update about the interaction. Repeated for every customer utterance and Alexa reply every day, that would begin to add up, hogging system resources and causing delays.

Kyle Goehner.png
Senior software development engineer Kyle Goehner.

Instead, the Alexa engineers use a two-table system to store contextual information. One table records the system-level events associated with a particular Alexa interaction, such as the instruction to transcribe the customer’s utterance and the instruction to synthesize Alexa’s reply. Each of these events is represented by a single short text string, in a single table entry.

The entry also contains references to a second table, which stores the encrypted texts of the customer utterance, Alexa’s reply, and any other contextual data. Each of those data items has its own entry, so once it’s written, it doesn’t need to be decrypted until Alexa has decided to create a context vector for the associated transaction.

“We have tried to keep the database design simple and flexible,” says Kyle Goehner, who led the engineering effort behind the follow-up contextual feature. “Even at the scale of Alexa, science is constantly evolving and our systems need to be easy to understand and adapt.”

Computation window

Delaying the creation of the context vector until the necessity arises poses a challenge, however, as it requires the execution of a complex computation in the middle of a customer’s interaction with Alexa. The engineers’ solution was to hide the computation time under Alexa’s reply to the customer’s request.

All Alexa interactions are initiated by a customer utterance, and almost all customer utterances elicit replies from Alexa. The event that triggers the creation of the context vector is re-opening the microphone to listen for a reply.

The texts of Alexa’s replies are available to the context model before Alexa actually speaks them, and the instruction to reopen the microphone follows immediately upon the instruction to begin the reply. This gives Alexa a narrow window of opportunity in which to produce the context vector.

Compute-window.cropped.png
Because the instruction to re-open the microphone (expect-speech directive) follows immediately upon the instruction to begin executing Alexa’s reply (speak directive), the reply itself buys the context model enough time to produce a context vector.

If the context model fails to generate a context vector in the available time, the ASR model simply operates as it normally would, without contextual information. As Goehner puts it, the contextual-ASR model is a “best-effort” model. “We’re trying to introduce accuracy improvement without introducing possible points of failure,” he says.

Consistent reads

To ensure that contextual ASR can work in real time, the Alexa engineers also took advantage of some of DynamoDB’s special features.

Like all good database systems, DynamoDB uses redundancy to ensure data availability; any data written to a DynamoDB server is copied multiple times. If the database is facing heavy demand, however, then when new data is written, there can be a delay in updating the copies. Consequently, a read request that gets routed to one of the copies may sometimes retrieve data that’s out of date.

To guard against this, every time Alexa writes new information to the contextual-ASR data table, it simultaneously requests the updated version of the entry recording the status of the interaction, ensuring that it never gets stale information. If the entry includes a record of the all-important instruction to re-open the microphone, Alexa initiates the creation of the contextual vector; if it doesn’t, Alexa simply discards the data.

Related content
Arabic posed unique challenges for speech recognition, language understanding, and speech synthesis.

“This work is the culmination of very close collaboration between scientists and engineers to design contextual machine learning to operate at Alexa scale,” says Debprakash Patnaik, a software development manager who leads the engineering teams behind the new system.

“We launched this service for US English language and saw promising improvements in speech recognition errors,” says Rumit Sehlot, a software development manager at Amazon. “We also made it very easy to experiment with other contextual signals offline to see whether the new context is relevant. One recent success story has been adding the context of local information — for example, when a customer asks about nearby coffee shops and later requests driving directions to one of them.”

“We recognize that after we’ve built and tested our models, the work of bringing those models to our customers has just begun,” adds Ivan Bulyko, an applied-science manager for Alexa Speech. “It takes sound design to make these services at scale, and that’s something the Alexa engineering team reliably provides.”

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.