Reducing unnecessary clarification questions from voice agents

New approach improves F1 score of clarification questions by 81%.

If two people are talking in a noisy environment, and one doesn’t hear the other clearly or doesn’t quite understand what the other person meant, the natural reaction is to ask for clarification. The same is true with voice agents like Alexa. Rather than taking a potentially wrong action based on inaccurate or incomplete understanding, Alexa will ask a follow-up question, such as whether a requested timer should be set for fifteen or fifty minutes.

Typically, the decision to ask such questions is based on the confidence of a machine learning model. If the model predicts multiple competing hypotheses with high confidence, a clarifying question can decide among them.

Our analysis of Alexa data, however, suggests that 77% of the time, the model’s top-ranked prediction is the right one, even if alternative hypotheses also get high confidence scores. In those cases, we'd like to reduce the number of clarifying questions we ask.

Last week, at the IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), we presented work in which we attempt to reduce unnecessary follow-up questions by training a machine learning model to determine when clarification is really necessary.

In experiments, we compared our approach to one in which the decision to ask follow-up questions was based on confidence score thresholds and other similar heuristics. We found that our model improved the F1 score of clarification questions by 81%. (The F1 score factors in both false positives — here, questions that didn’t need to be asked — and false negatives — here, questions that should have been asked but weren’t.)

HypRank model

With most voice agents, the acoustic signal of a customer utterance first passes to an automatic-speech-recognition (ASR) model, which generates multiple hypotheses about what the customer said. The top-ranked hypotheses then pass to a natural-language-understanding (NLU) model, which identifies the customer’s intent — the action the customer wants performed, such as PlayVideo — and the utterance slots — the entities on which the intent should act, such as VideoTitle, which might take the value “Harry Potter”.

In the setting we consider in our paper, hypotheses generated by our ASR and NLU models pass to a third model, called HypRank, for hypothesis ranker. HypRank combines the predictions and confidence scores of ASR, intent classification, and slot-filling with contextual signals, such as which skills a given customer has enabled, to produce an overall ranking of the different hypotheses.

Harry Potter hypotheses.png
An example of HypRank’s ranking of hypotheses for the utterance “Harry Potter”. There are three potential sources of ambiguity: ASR, intent confidence, and hypothesis confidence.

With this approach, there are three possible sources of ambiguity: similarity of ASR score, similarity of intent classification score, and similarity of overall HypRank score. In a traditional scheme, a small enough difference in any of these scores would automatically trigger a clarification question.

To clarify or not to clarify

Instead, in our method, we train yet another machine learning model to decide whether a clarification question is in order. In addition to similarity of ASR, NLU, or HypRank score, the model considers two other sources of ambiguity: signal-to-noise ratio (SNR) and truncated utterances. A truncated utterance is one that ends with an article (“an”, “the”, etc.), one of several possessives (such as “my”), or a preposition. For instance, “Alexa, play ‘Hello’ by” is a truncated utterance.

As input, the model receives the top-ranked HypRank hypothesis; any other hypotheses with similar enough scores on any of the three measures; the SNR; a binary value indicating whether the request is a repetition (an indication that it wasn’t satisfactorily fulfilled the first time); and binary values indicating which of the five sources of ambiguity pertain.

The number of input hypotheses can vary, depending on how many types of ambiguity pertain. So the vector representations of all hypotheses other than the top-ranked hypothesis are combined to form a summary vector, which is then concatenated with vector representations of the other inputs. The concatenated vector passes to a classifier, which decides whether to issue a clarification question.

Clarification architecture.expanded.png
The architecture of our model.

Experiments

To our knowledge, there are no existing datasets that feature multiple ASR and NLU hypotheses labeled according to accuracy. So to train our model, we used data that had been automatically annotated by a model that my Amazon colleagues presented last year at the NeurIPS Workshop on Human-in-the-Loop Dialogue Systems.

Their model was trained on a combination of hand-annotated data and data labeled according to feedback from customers who were specifically asked, after Alexa interactions, whether they were satisfied with their results. We used the model to label additional utterances, with no human involvement.

Since all the samples in the dataset featured at least one type of ambiguity, our baseline was asking clarification questions in every case. That approach has a false-negative rate of zero — it never fails to ask a clarification question when necessary — but it could have a high false-positive rate. Our approach may increase the false-negative rate, but the increase in F1 score means that it strikes a much better balance between false negatives and false positives.

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.