Arabic Alexa redone.jpeg
At launch, the Arabic version of Alexa will be available in the Kingdom of Saudi Arabia and the United Arab Emirates.

How Alexa learned Arabic

Arabic posed unique challenges for speech recognition, language understanding, and speech synthesis.

The Arabic version of Alexa launched in December 2021, in the Kingdom of Saudi Arabia and the United Arab Emirates, and like all new Alexa languages, it posed a unique set of challenges.

The first was to decide what forms of Arabic Alexa should speak. While the official written language in KSA and the UAE is Modern Standard Arabic (MSA), in everyday life, Arabic speakers use dialectal forms of Arabic, with many vernacular variations.

For customers, engaging with Alexa in their native dialects would be more natural than speaking MSA. So the Alexa AI team — including computational linguists — determined that Arabic Alexa would be able to understand requests in both MSA and Khaleeji (Gulf) dialects.

Alexa’s speech outputs, too, would be in both MSA and a Khaleeji dialect — MSA for formal speech, such as responses to requests for information, and Khaleeji for less formal speech, such as confirmation of alarm times and music selections. This means that someone issuing Alexa a request in one Arabic dialect might get a response in a different one. But that mirrors the experience that Arabic speakers in the region have with each other.

Al Fatiha.jpg

The core components of a new Alexa model are automatic speech recognition (ASR), which converts speech into text; natural-language understanding (NLU), which interprets the text to initiate actions; and text-to-speech (TTS), which converts NLU outputs into synthesized speech.

A key question for all three components was how to render utterances textually, both as ASR output and TTS input. Written Arabic suppresses short vowel sounds: it would be sort of like spelling the English word “begin” as “bgn”. People are usually able to infer the mssng vwls frm cntxt.

But in formal and educational texts — such as reading primers for children — vowels and some consonantal sounds are indicated by diacritical marks. So the Alexa AI team had to decide whether the ASR output should include diacritics or not.

One of the major differences between dialects is the vowel sounds, so omitting diacritics makes it easier to create a speech representation that’s applicable to all dialects, which is useful for ASR and NLU.

Moreover, there is no published writing in forms of Arabic other than MSA, so there’s no standard orthography for them, either. Asking annotators to add diacritics could introduce more ambiguity than it alleviates. In the end, the Alexa AI team decided that ASR output should use only two diacritics, the shaddah and maddah, because they help with pronunciation accuracy on entity names that pass from ASR through NLU to TTS.

These design decisions had separate implications for the various Alexa AI teams — ASR, NLU, and TTS — and of course, each of the teams faced its own particular challenges as well.


One of the ASR team’s goals was to provide a consistent output, given the lack of standardized orthography for both dialectal Arabic and foreign loanwords. One of their decisions was to represent loanwords — such as the names of French or American musicians or albums — using Latin script.

ASR researchers.png
L to R: Applied-science manager Volker Leutnant and applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan

To that end, they used a so-called catalogue ingestion normalizer, which takes in a catalogue of terms in French and English and converts the corresponding Arabic-script outputs of the ASR model into Latin script.

Applied-science manager Volker Leutnant and his colleagues on the Alexa Speech team — including applied scientists Moe Hethnawi and Bashar Awwad Shiekh Hasan — began with an English acoustic model, which started out better attuned to human speech sounds than a randomly initialized model. They trained it using public datasets of Arabic speech in the target Khaleeji dialects and data from Cleo, an Alexa skill that allows multilingual customers to help train new-language models by responding to voice prompts with open-form utterances. The Cleo data included labeled utterances in additional Arabic dialects, allowing the ASR model to provide more consistent user experience for a wider range of customers.


An NLU model takes in utterances transcribed by ASR and classifies them according to intent, such as playing music. It also identifies all the slots in the utterance — such as song names or artist names — and their slot values — such as the particular artist name “Ahlam”.

The first thing the NLU model needs to do is to tokenize the input, or split it into semantic units that should be processed separately. In many languages, tokenization happens naturally during ASR. But Arabic uses word affixes — prefixes and suffixes — to convey contextual meanings.

Some of those affixes, such as articles and prepositions — the Arabic equivalents of “the” or “to” — are irrelevant to NLU and can be left attached to their word stems. But some, such as possessives, require independent slot tags. The suffix meaning “my”, for instance, in the Arabic for “my music”, tells the NLU model just which music the customer wants played. Language engineer Yangsook Park and her colleagues designed the tokenizer to split off those important affixes and leave the rest attached to their stems.

Announce breakfast.jpg

The tokenized input passes to the NLU model, which is a trilingual model, able to process inputs in Arabic, French or English. This not only helps the model handle loanwords used in Arabic, but it also enables the transfer of knowledge from French and English, which currently have more abundant training data than Arabic.

Research science manager Karolina Owczarzak and her team at Alexa AI — including research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio — resampled the existing Arabic training data to expand the variety of training examples. For instance, their resampling tool replaces the names of artists or songs in existing utterances with other names from the song catalogue.

A crucial consideration was how many resampled utterances with the same basic structure to include in the training data. Using too many examples based on the same template — such as “let me hear <SongName> by <ArtistName>” or “play the <ArtistName> song <SongName>” —could diminish the model’s performance on other classes of utterance.

To compute the optimal number of examples per utterance template, the NLU researchers constructed a measure of utterance complexity, which factored in both the number of slots in the utterance template and the number of possible values per slot. The more complex the utterance template, the more examples it required.

NLU researchers.png
L to R: Language engineer Yangsook Park, research science manager Karolina Owczarzak, and research scientists Khadige Abboud, Olga Golovneva, and Christopher DiPersio

The model-training process began with a BERT-based language model, which was pretrained on all three languages using unlabeled data and the standard language-modeling objective. That is, words of sentences were randomly masked out, and the model learned to predict the missing words from those that remained. In this stage, the NLU team augmented the Arabic dataset with data translated from English by AWS Translate.

Then the researchers trained the model to perform NLU tasks by fine-tuning it on a large corpus of annotated French and English data — that is, utterances whose intents and slots had been labeled. The idea was to use the abundant data in those two languages to teach the model some general principles of NLU processing, which could then be transferred to a model fine-tuned on the sparser labeled Arabic data.

Finally, the model was fine-tuned again on equal amounts of labeled training data in all three languages, to ensure that fine-tuning on Arabic didn’t diminish the model’s performance on the other two languages.


Whereas diacritics can get in the way of NLU, they’re indispensable to TTS: the Alexa speech synthesizer needs to know precisely which vowel sounds to produce as output. So when the Arabic TTS model gets a text string from one of Alexa’s functions — such as confirmation of a music selection from the music player — it runs it through a diacritizer, which adds the full set of diacritics back in.

TTS team.png
L to R: Software engineer Tarek Badr, applied scientist Fan Yang, and language engineer Merouane Benhassine.

The TTS researchers, led by software engineer Tarek Badr and applied scientist Fan Yang, trained the diacritizer largely on MSA texts, with some supplemental data in Khaleeji dialects, which the Alexa team compiled itself. Inferring the correct diacritics depends on the whole utterance context: as an analogy, whether “crw” represents “craw”, “crew”, or “crow” could usually be determined from context. So the diacritizer model has an attention mechanism that attends over the complete utterance.

Outputs that should be in Khaleeji Arabic then pass through a module that converts the diacritics to representations of the appropriate short-vowels sounds, along with any other necessary transformations. This is a rule-based system that language engineer Merouane Benhassine and his colleagues built to capture the predictable relationships between MSA and Khaleeji Arabic.

The text-to-speech model itself is a neural network, which takes text as input and outputs acoustic waveforms. It takes advantage of the Amazon TTS team’s recent work on expressive speech to endow the Arabic TTS model with a lively, conversational style by default.

A new Alexa language is never simply a new language: it’s a new language targeted to a specific new locale, because customer needs and linguistic practices vary by country. Going forward, the Alexa AI team will continue working to expand Arabic to additional locales — even as it continues to extend Alexa to whole new language families.

Related content

US, WA, Seattle
Job description: We are reimagining Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
RO, Iasi
Amazon’s mission is to be earth’s most customer-centric company and our team is the guardian of our customer’s privacy. Amazon SDO Privacy engineering operates in Austin – TX, US and Iasi, Bucharest – Romania. Our mission is to develop services which will enable every Amazon service operating with personal data to satisfy the privacy rights of Amazon customers. We are working backwards from the customers and world-wide privacy regulations, think long term, and propose solutions which will assure Amazon Privacy compliance. Our external customers are world-wide customers of Amazon Retail Website, Amazon B2B services (e.g. Seller central, App / Skill Developers), and Amazon Subsidiaries. Our internal customers are services within Amazon who operate with personal data, Legal Representatives, and Customer Service Agents. You can opt-in for being part of one of the existing or newly formed engineering teams who will contribute to Amazon mission to meet external customers’ privacy rights: Personal Data Classification, The Right to be forgotten, The right of access, or Digital Markets Act – The Right of Portability. The ideal candidate has a great passion for data and an insatiable desire to learn and innovate. A commitment to team work, hustle and strong communication skills (to both business and technical partners) are absolute requirements. Creating reliable, scalable, and high-performance products requires a sound understanding of the fundamentals of Computer Science and practical experience building large-scale distributed systems. Your solutions will apply to all of Amazon’s consumer and digital businesses including but not limited to, Alexa, Kindle, Amazon Go, Prime Video and more. Key job responsibilities As an data scientist on our team, you will apply the appropriate technologies and best practices to autonomously solve difficult problems. You'll contribute to the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. You will collaborate with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. Your work will directly impact the trust customers place in Amazon Privacy, globally.
JP, 13, Tokyo
The JP Economics team is a central science team working across a variety of topics in the JP Retail business and beyond. We work closely with JP business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel economic/econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with JP- EU- and US-based interdisciplinary teams. In this role, you will build ground-breaking, state-of-the-art causal inference models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, econometrics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. Contribute to building a strong data science community in Amazon Asia.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.