How to build highly expressive speech models

New voice for Alexa’s Reading Sidekick feature avoids the instabilities common to models with variable prosody.

In June, Alexa announced a new feature called Reading Sidekick, which helps kids grow into confident readers by taking turns reading with Alexa, while Alexa provides encouragement and support. To make this an engaging and entertaining experience, the Amazon Text-to-Speech team developed a version of the Alexa voice that speaks more slowly and with more expressivity than the standard, neutral voice.

Girl reading.png
A child enjoying Reading Sidekick with her panda Echo Dot Kids.

Because expressive speech is more variable than neutral speech, expressive-speech models are prone to stability issues, such as sudden stoppages or harsh inflections. To tackle this problem, model developers might collect data that represents a dedicated style; but that is costly and time consuming. They might deliver a model that is not based on attention — that is, it doesn’t focus on particular words of prior inputs when determining how to handle the current word. However, attentionless models are more complex, requiring more effort to deploy and often causing additional latency. 

Our goal was to develop a highly expressive voice without increasing the burden of either data collection or model deployment. We did this in two ways: by developing new approaches for data preprocessing and by delivering models adapted to expressive speech. We also collaborated closely with user experience (UX) researchers, both before and after building our models.

Comparison of storytelling voices
Alexa's standard voice
Alexa's new storytelling voice

To determine what training data to collect, we ran a UX study before the start of the project, in which children and their parents listened to a baseline voice synthesizing narrative passages. The results indicated that a slower speech rate and enhanced expressivity would improve customer experience. When recording training data, we actively controlled both the speaking rate and the expressivity level.

After we’d built our models, we did a second UX study and found that, for story reading, subjects preferred our new voice over the standard Alexa voice by a two-to-one margin.

Data curation

The instability of highly expressive voice models is due to “extreme prosody”, which is common in the reading of children’s books. Prosody is the rhythm, emphasis, melody, duration, and loudness of speech; adults reading to young children will often exaggerate inflections, change volume dramatically, and extend or shorten the duration of words to convey meaning and hold their listeners’ attention.

Reading Sidekick screen.png
The Reading Sidekick book list screen for the Echo Show.

Although we want our dataset to capture a wide range of expressivity, some utterances may be too extreme. We developed a new approach to preprocessing training data that removes such outliers. For each utterance, we calculate the speaker embedding — a vector representation that captures prosodic features of the speaker’s voice. If the distance between a given speaker embedding and the average one is too large, we discard the utterance from the training set.

Next, from each speech sample, we remove segments that cannot be automatically transcribed from audio to text. Since most such segments are dead air, removing them prevents the model from pausing too long between words.

Modeling

On the modeling side, we use regularization and data augmentation to increase stability. A neural-network-based text-to-speech (NTTS) system consists of two components: (1) a mel-spectrogram generator and (2) a vocoder. The mel-spectrogram generator takes as input a sequence of phones — the shortest phonetic units — and outputs the amplitude of a signal at audible frequencies. It is responsible for the prosody of the voice. 

The vocoder adds phase information to the mel-spectrogram, to create the synthetic speech signal. Without the phase information, the speech would be robotic. Our team previously developed a universal vocoder that works well for this application.

During training, we apply an L2 penalty to the weights of the mel-spectrogram generator; that is, weights that deviate from the average are assessed a penalty during training, and the penalty varies with the square of the deviation. This is a form of regularization, which reduces overfitting on the recording data.

We also use data augmentation to improve the output voice. We add neutral recordings to the training recordings, providing less extreme prosodic trajectories for the model to learn from.

As an additional input, for both types of training data, we provide the model with a style id, which helps it learn to distinguish the storytelling style from other styles available through Alexa. The combination of recording, processing, and regularization makes the model stable.

TTS pipeline.cropped.png
The text-to-speech processing pipeline, with style ID as an input.

Evaluation

To evaluate the Reading Sidekick voice, we asked adult crowdsourced testers which voice they preferred for reading stories to children. The standard Alexa voice was our baseline. We tested 100 short passages with a mean duration of around 15 seconds, each of which was evaluated 30 times by different crowdsourced testers. The testers were native speakers of English; no other constraint was imposed on the tester selection.

pref_standard_vs_storytelling.png
Participants in a user study preferred the new storytelling voice to Alexa's standard voice by a two-to-one margin.

The results favor the Reading Sidekick voice by a large margin (61.16% Reading Sidekick vs 30.46% baseline, with P<.001), particularly considering the very noisy nature of crowdsourced evaluations and the fact that we did not discard any of the data received.

Thanks to Marco Nicolis and Arnaud Joly for their contributions to this research.

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000