DynamoDB 10-year anniversary Swami Sivasubramanian and Werner Vogels
The early success of the Dynamo database encouraged Swaminathan (Swami) Sivasubramanian (top right), Werner Vogels (lower right) and colleagues to write the Dynamo research paper, and share it at the 2007 ACM Symposium on Operating Systems Principles (SOSP conference). The Dynamo paper served as a catalyst to create the category of distributed database technologies commonly known as NoSQL. Dynamo is the progenitor to Amazon DynamoDB, the company's cloud-based NoSQL database service that launched 10 years ago today.

Amazon’s DynamoDB — 10 years later

Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Ten years ago, Amazon Web Services (AWS) launched Amazon DynamoDB, a fast, flexible NoSQL database service that offers single-digit millisecond performance at any scale.

In an online post on Jan. 18, 2012, Werner Vogels, chief technical officer at Amazon.com, wrote: “Today is a very exciting day as we release Amazon DynamoDB, a fast, highly reliable and cost-effective NoSQL database service designed for internet scale applications. DynamoDB is the result of 15 years of learning in the areas of large scale non-relational databases and cloud services.

“Several years ago we published a paper on the details of Amazon’s Dynamo technology, which was one of the first non-relational databases developed at Amazon,” Vogels continued. “The original Dynamo design was based on a core set of strong distributed systems principles resulting in an ultra-scalable and highly reliable database system. Amazon DynamoDB, which is a new service, continues to build on these principles, and also builds on our years of experience with running non-relational databases and cloud services, such as Amazon SimpleDB and Amazon S3, at scale. It is very gratifying to see all of our learning and experience become available to our customers in the form of an easy-to-use managed service.”

One of Vogel’s coauthors on the 2007 Dynamo paper, and a key contributor to the development of DynamoDB was Swaminathan (Swami) Sivasubramanian, then an Amazon research engineer working on the design, implementation, and analysis of distributed systems technology, and now vice president of Database, Analytics, and Machine Learning at AWS.

More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.
Swami Sivasubramanian

A decade after the launch of DynamoDB, Sivasubramanian says we’re “experiencing an amazing era of renaissance when it comes to data and machine learning.”

“We now live in an era where you can actually store your data in these databases and quickly start building your data lakes within Amazon S3 and then analyze them using Amazon SageMaker in a matter of a couple of weeks, if not days. That is simply remarkable.

“We now have the opportunity to help customers gain insights from their data faster,” Sivasubramanian added. “This is a mission that truly excites me because customers really want to put their data to work to enable data-driven decision making. More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.”

To mark the 10-year anniversary of the launch of Amazon DynamoDB, Amazon Science asked Sivasubramanian three questions about the origins of DynamoDB, its progenitor Dynamo, and the future of DynamoDB.

  1. Q. 

    You were a co-author on the 2007 Dynamo paper. At that time, the industry was transitioning to a scale out vs scale up architectural approach. Can you tell us about the origin story for Dynamo?

    A. 

    To get to 2007, I have to start with 2004, 2005. Even as I was working on my PhD [Sivasubramanian earned his PhD in computer science in 2006 from Vrije Universiteit Amsterdam] I was contemplating where I would work. Ultimately what convinced me to join Amazon as a research engineer intern [2005] was seeing how Amazon was pushing the boundaries of scale.

    I admit I was a little bit of a skeptic as an outsider. At that time, AWS didn’t even exist. But when I joined, I soon had an ‘a ha moment’ that, yes, Amazon was an e-commerce company, but actually it was a technology company that also did e-commerce. It was an interesting revelation for me seeing how Amazon had to invent so many new technologies to even support its e-commerce workload.

    As an intern, I was working as an engineer on amazon.com and during our peak holiday traffic time we experienced a serious scaling failure due to a database transaction deadlocking issue. The problem was caused by the relational database from a commercial vendor that we were using at the time. A bunch of engineers got together and wrote what we call a COE, a correction of errors document in which we say what happened, what we learned, how we fixed the issue, and how we would avoid a recurrence.

    I don't know if it was me being naive or just being confident in the way only a 20 something intern can be, but I asked the question ‘Why are we using a relational database for this? These workloads don't need the SQL level of complexity and transactional guarantees.’

    Peter Vosshall presents Dynamo at 2007 ACM Symposium on Operating System Principles (SOSP).

    This led us to start rethinking how we architected our underlying data stores altogether. At the time there wasn’t a scalable non-relational database. This is what led us to build the original Dynamo, and which led us to write the paper. Dynamo was not the only thing we were rethinking about our architecture at this time. We realized we also needed a scalable storage system, which led us to build S3, and we also realized that we needed a more managed relational database with the ability to do automated replication, failover, and backups/restore, which led us to build Amazon RDS.

    One rule we had related to writing the original Dynamo paper was not to publish when we developed the original design, but first let Dynamo run in production supporting several Amazon.com services, so that the Dynamo paper would be an end-to-end experience paper. Werner and I felt very strongly about this because we didn't want it to be just another academic paper. That’s why I was very proud when 10 years later that paper was awarded a test of time award.

  2. Q. 

    What’s the origin story for DynamoDB, and how has the technology evolved in the past decade?

    A. 

    The idea behind DynamoDB developed from discussions with customers like Don MacAskill, the CEO of SmugMug and Flickr. More and more companies like Don’s were web-based companies, and the number of users online was exploding. The traditional relational database model of storing all the data in a single box was not scaling well. It forced the complexity back on the users to shard their relational databases and then manage all the partitioning and re-partitioning and so forth.

    This wasn’t new to us; these challenges are why we built the original Dynamo, but it wasn’t yet a service. It was a software system that Amazon engineers had to operate. At some point in one of our customer advisory board meetings, Don said, ‘You all started Dynamo and showed what is possible with a scalable non-relational database system. Why can't we have that as an external service?’

    All senior AWS executives were there, and honestly it was a question we were asking ourselves at the time. Don wasn’t the only customer asking for it, more and more customers wanted that kind of scalable database where they didn't have to deal with partitioning and re-partitioning, and they also wanted extreme availability. This led to the genesis of our thinking about what it would take to build a scalable cloud database that wasn’t constrained by the SQL API.

    DynamoDB was different from the original Dynamo because it actually exposed several of the original Dynamo components via very easy-to-use cloud controls. Our customers didn’t have to provision clusters anymore. They could just create a table and seamlessly scale it up and down; they didn’t have to deal with any of the operations, or even install a single library to operate a database. This evolution of Dynamo to DynamoDB was important because we truly embraced the cloud, and its elasticity and scalability in an unprecedented manner.

    Werner Vogels, vice president and chief technology officer of Amazon.com, introduced DynamoDB on Jan. 18, 2012 with this post in which he said DynamoDB "brings the power of the cloud to the NoSQL database world."

    We launched it on January 18th, 2012 and it was a hit right out of the gate. Don’s company and several others started using it. Right from the launch, not just elasticity, but single-digit latency performance was something that resonated really well with customers. We had innovated quite a bit, all the way from the protocol layer, to the underlying storage layer for SSD storage, and other capabilities that we enabled.

    One of the first production projects was a customer with an interesting use case; they were doing a Super Bowl advertisement. Because DynamoDB was extremely elastic it could seamlessly scale up to 100,000 writes a second, and then scale down after the Super Bowl was over so they wouldn’t incur costs anymore. This was a big deal; it wasn’t considered possible at that time. It seems super obvious now, but at that time databases were not that elastic and scalable.

    It was a bold vision. But DynamoDB’s built-for-the-cloud architecture made all of these scale-out use cases possible, and that is one of the reasons why DynamoDB now powers multiple high-traffic Amazon sites and systems including Alexa, Amazon.com, and all Amazon fulfillment centers. Last year, over the course of our 66-hour Prime Day, these sources made trillions of API calls and DynamoDB maintained high availability with single-digit millisecond performance, peaking at 89.2 million requests per second.

    And since 2012, we have added so many innovations, not just for its underlying availability, durability, security and scale, but ease-of-use features as well.

    Swami Sivasubramanian, AWS | CUBE Conversation, January 2022

    We’ve gone beyond key value store and now support not just a hash-based partition but also range-based partitioning, and we’ve added support for secondary indexes to enable more complex query capabilities —without compromising on scale or availability.

    We also now support scalable change data capture through Amazon Kinesis Data Steams for DynamoDB. One of the things I strongly believe with any database is that it should not be an island; it can’t be a dead end. It should generate streams of what data changed and then use that to bridge it to your analytics applications, or other data stores.

    We have continued innovating across the board on features like backup and restore. For a large-scale database system like DynamoDB with millions of partitions, doing backup and restore isn’t easy, and a lot of great innovations went into making this experience easy for customers.

    We have also added the ability to do global tables so customers can operate across multiple regions. And then we added the ability to do transactions with DynamoDB, all with an eye on how do you continue to keep DynamoDB’s mission around availability and scalability?

    Recently we also launched the ability to reduce the cost of storage with the Amazon DynamoDB Standard Infrequent Access table class. Customers often need to store data long term, and while this older data may be accessed infrequently, it must remain highly available. For example, end users of social media apps rarely access older posts and uploaded images, but the app must ensure that these artifacts are immediately accessible when requested. This infrequently accessed data can represent significant storage expense for customers due to their growing volume and the relatively high cost of storing this data, so customers optimize costs in these cases by writing code to move older, less frequently accessed data from DynamoDB to lower cost storage alternatives like Amazon S3. So at the most recent re:Invent we launched Amazon DynamoDB Standard-Infrequent Access table class, a new cost-efficient table class to store infrequently accessed data, yet maintain the high availability and performance of DynamoDB.

    We are on this journey of maintaining the original vision of DynamoDB as the guiding light, but continue to innovate to help customers with use cases around ease of querying, the ability to do complex, global transaction replication, while also continuing to manage costs.

  3. Q. 

    What might the next 10 years bring?

    A. 

    When we started with DynamoDB ten years ago, the cloud itself was something customers were just starting to understand better — its benefits and what they could do.

    Now we live in a world where cloud is the new normal in terms of how customers are building IT applications, and scale is also the new normal because every app is being built to handle viral moments. DynamoDB itself will be on this continuous journey where we will continue to innovate on behalf of customers. One of the things we will continue moving toward is an end-to-end data strategy mission because, as I mentioned earlier, no database is an island.

    Customers no longer want to just store and query the data in their databases. They then want to analyze that data to create value, whether that’s a better personalization or recommendation engine, or a forecasting system that you can run predictive analytics against using machine learning. Connecting the dots end to end, and continuing to make DynamoDB more secure, more available, more performant, and easier to use will be our never-ending journey.

Research areas

Related content

US, WA, Seattle
The Amazon Devices and Services organization designs, builds and markets Kindle e-readers, Fire Tablets, Fire TV Streaming Media Players and Echo devices. The Device Economics team is looking for an Economist to join our fast paced, start-up environment to help invent the future of product economics. We solve significant business problems in the devices and retail spaces by understanding customer behavior and developing business decision-making frameworks. You will build econometric and machine learning models for causal inference and prediction, using our world class data systems, and apply economic theory to solve business problems in a fast-moving environment. This involves analyzing Amazon Devices and Services customer behavior, and measuring and predicting the lifetime value of existing and future products. We build scalable systems to ensure that our models have broad applicability and large impact. You will work with Scientists, Economists, Product Managers, and Software Developers to provide meaningful feedback about stakeholder problems to inform business solutions and increase the velocity, quality, and scope behind our recommendations. Key job responsibilities Applies expertise in causal modeling to develop econometric/machine learning models to measure the economic value of devices and the business Reviews models and results for other scientists, mentors junior scientists Generates economic insights for the Devices and Services business and work with stakeholders to run the business for effectively Describes strategic importance of vision inside and outside of team. Identifies business opportunities, defines the problem and how to solve it. Engages with scientists, business leadership outside Devices and Services to understand interplay between different business units We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Seattle
Amazon Advertising's Publisher Technologies team is looking for an experienced Applied Scientist with proven research experience in control theory, online machine learning, and/or mechanism design to drive innovative algorithms for ad-delivery at scale. Your work will directly shape pacing, yield optimization, and ad-selection for Amazon's publishers and impact experiences for hundreds of millions of users and devices. About the team Amazon Advertising operates at the intersection of eCommerce, streaming, and advertising, offering a rich array of digital advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers reach customers across Amazon's owned and operated sites (publishers) across the web and on millions of devices such as Amazon.com, Prime Video, FreeVee, Kindles, Fire tablets, Fire TV, Alexa, Mobile, Twitch, and more. Within Ads, Publisher Technologies is building the next generation of ad-serving products to allow our publishers to monetize their on-demand, streaming, and static content across Amazon’s ad network in a few clicks. Publishers interact directly with our technology, through programmatic APIs to optimize billions of impression opportunities per day. About the role Publisher Technologies is looking to build out our Publisher Ad Server Science + Simulation and Experimentation team to drive innovation across ad-server delivery algorithms for budget pacing, ad-selection, and yield optimization. We seek to ensure the highest quality experiences for Amazon's customers by matching them with most relevant ads while ensuring optimal yield for publishers. As a Senior Applied Scientist, you will research, invent, and apply cutting edge designs and methodologies in control theory, online optimization, and machine learning to improve publisher yield and customer experience. You will work closely with our engineering and product team to design and implement algorithms in production. In addition, you will contribute to the end state vision of AI enhanced ad-delivery. You will be a foundational member of the team that builds a world-class, green-field ad-delivery service for Amazon's video, audio, and display advertising. To be successful in this role, you must be customer obsessed, have a deep technical background in both online algorithms and distributed systems, comfort dealing with ambiguity, an eye for detail, and a passion to identify and solve for practical considerations that occur when complex control-loops have to operate autonomously and reliably to make millisecond level decisions at scale. You are a technical leader with track record of building control theoretic and/or machine learning models in production to drive business KPIs such as budget delivery. If you are interested working on challenging and practical problems that impact hundreds of millions of users and devices and span cutting edge areas of optimization and AI while having fun on a rapidly expanding team, come join us! Key job responsibilities * Developing new statistical, causal, machine learning, and simulation techniques and develop solution prototypes to drive innovation * Developing an understanding of key business metrics / KPIs and providing clear, compelling analysis that shapes the direction of our business * Working with technical and non-technical customers to design experiments, simulations, and communicate results * Collaborating with our dedicated software team to create production implementations for large-scale data analysis * Staying up-to-date with and contributing to the state-of-the-art research and methodologies in the area of advertising algorithms * Presenting research results to our internal research community * Leading training and informational sessions on our science and capabilities * Your contributions will be seen and recognized broadly within Amazon, contributing to the Amazon research corpus and patent portfolio. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Alexa Economics team is looking for a Senior Economics Manager who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The candidate will work with various product, analytics, science, and engineering teams to develop models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into data products at scale. They will lead teams of researchers to produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Alexa. Key job responsibilities Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work well in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science for business teams, so that leaders are equipped with the right data and mental model to make important business decisions. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will be customer centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life - Review new technical approaches to understand Engagement and associated benefits to Alexa. - Partner with Engineering and Product teams to inject econometric insights and models into customer-facing products. - Help business teams understand the key causal inputs that drive business outcome objectives. About the team The Alexa Engagement and Economics and Team uses data, analytics, economics, statistics, and machine learning to measure, report, and track business outputs and growth. We are a team that is obsessed with understanding customer behaviors, and leveraging all aspects from customers behaviors with Alexa and Amazon to develop and deliver solutions that can drive Alexa growth and long-term business success. We use causal inference to identify business optimization and product opportunities. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. A day in the life We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. About the team On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Seattle, WA, USA
US, WA, Seattle
The ASFS Team is hiring an Intern in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics and macroeconomics, as well as familiarity with Python, Matlab, or R is necessary. This is a full-time position at 40 hours per week, with compensation being awarded on an hourly basis. You will use internal and external data to estimate macroeconometric models to answer critical business questions, also you will have the opportunity to collaborate with economists and data scientists. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York City, NY, USA | Seattle, WA, USA
US, WA, Bellevue
As an Applied Scientist on our Learning and Development team, you will play a critical role in driving the design, development, and delivery of learning programs and initiatives aimed at enhancing leadership and associate development within the organization. You will leverage your expertise in learning science, data analysis, and statistical model design to create impactful learning journey roadmap that align with organizational goals and priorities. Key job responsibilities 1) Research and Analysis: Conduct research on learning and development trends, theories, and best practices related to leadership and associate development. Analyze data to identify learning needs, performance gaps, and opportunities for improvement within the organization. Use data-driven insights to inform the design and implementation of learning interventions. 2) Program Design and Development: Collaborate with cross-functional teams to develop comprehensive learning programs focused on leadership development and associate growth. Design learning experiences using evidence-based instructional strategies, adult learning principles, and innovative technologies. Create engaging and interactive learning materials, including e-learning modules, instructor-led workshops, and multimedia resources. 3) Evaluation and Continuous Improvement: Develop evaluation frameworks to assess the effectiveness and impact of learning programs on leadership development and associate performance. Collect and analyze feedback from participants and stakeholders to identify strengths, areas for improvement, and future learning needs. Iterate on learning interventions based on evaluation results and feedback to continuously improve program outcomes. 4) Thought Leadership and Collaboration: Serve as a subject matter expert on learning science, instructional design, and leadership development within the organization. Collaborate with stakeholders across the company to align learning initiatives with strategic priorities and business objectives. Share knowledge and best practices with colleagues to foster a culture of continuous learning and development. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Nashville, TN, USA
US, WA, Seattle
Amazon Web Services (AWS) is building a world-class marketing organization, and we are looking for an experienced Economist to join the central data and science organization for AWS Marketing. This candidate will develop innovative solutions to measure the return on marketing investments. They will work closely with business leaders, scientists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of innovative measurement solutions. They will interact with functional leaders owning events (e.g. re:Invent, summits, webinars), paid media (paid search, paid social, display), AWS-owned channels (email, website, console) as well as lead management organization to drive the development, fine-tuning and adoption of the consistent measurement framework across these diverse initiatives. We seek candidates with an entrepreneurial spirit who want to make a big impact on AWS growth. They will develop strong working relationships and thrive in a collaborative team environment. They will have the creativity, curiosity, and strong judgment to work on high-impact, high-visibility products to improve the experience of AWS leads and customers. Key job responsibilities - Apply your expertise in causal inference and ML to develop systems to measure B2B marketing impact - Develop and execute science products from concept, prototype to production incorporating feedback from customers, scientists and business leaders - Identify new opportunities for leveraging economic insights and models in the marketing space - Write technical white papers and business-facing documents to clearly explain complex technical concepts to audiences with diverse business/scientific backgrounds We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | New York City, NY, USA | Seattle, WA, USA
US, GA, Atlanta
Looking for your next challenge? North America Sort Centers (NASC) are experiencing growth and looking for a skilled, highly motivated Data Scientist to join the NASC Engineering Data, Product and Simulation Team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Key job responsibilities The Senior Data Scientist will design and implement solutions to address complex business questions using simulation. In this role, you will apply advanced analysis techniques and statistical concepts to draw insights from massive datasets, and create intuitive simulations and data visualizations. You can contribute to each layer of a data solution – you work closely with process design engineers, business intelligence engineers and technical product managers to obtain relevant datasets and create simulation models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. On this team, you will have a large impact on the entire NASC organization, with lots of opportunity to learn and grow within the NASC Engineering team. This role will be the first dedicated simulation expert, so you will have an exceptional opportunity to define and drive vision for simulation best practices on our team. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and deliver results that meet high standards of data quality, security, and privacy. About the team NASC Engineering’s Product and Analytics Team’s sole objective is to develop tools for under the roof simulation and optimization, supporting the needs of our internal and external stakeholders (i.e Process Design Engineering, NASC Engineering, ACES, Finance, Safety and Operations). We develop data science tools to evaluate what-if design and operations scenarios for new and existing sort centers to understand their robustness, stability, scalability, and cost-effectiveness. We conceptualize new data science solutions, using optimization and machine learning platforms, to analyze new and existing process, identify and reduce non-value added steps, and increase overall performance and rate. We work by interfacing with various functional teams to test and pilot new hardware/software solutions. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Bellevue, WA, USA
US, WA, Bellevue
Amazon’s Middle Mile Planning & Optimization team is looking for an exceptional Sr. Applied Scientist to solve complex optimization problems that ensure we exceed customer delivery promise expectations and minimize overall operational cost while supporting Amazon’s rapid growth globally. We use cutting edge technologies in large-scale optimization, predictive analytics, and generative AI to optimize the flow of packages within our network to efficiently match network capacity with shipment demand. Our services already handle thousands of requests per second, make business decisions impacting billions of dollars a year, and improve the delivery experience for millions of online shoppers. That said, this remains a fast-growing business and our journey has just started. Our mission is to build the most efficient and optimal transportation solution on the planet, using our technology and engineering muscle as our biggest advantage. Key job responsibilities You will work closely with product managers, research scientists, business/operations leaders, and technical leadership to build capabilities that transform our transportation network. This includes analyzing big data, building end-to-end workflows, prototype optimization/simulation models, and launch production capabilities. You will have exposure to senior leadership as you communicate results and provide scientific guidance to the business. Your insights will be a key influencer of our product strategy and roadmap and your experimental research will inform our future investment areas. About the team You will join the Surface Research Science (SRS) team, which is the science partner of the Middle-Mile Planning & Optimization tech organization. SRS is working on a fascinating range of problems, including some of the hardest and largest optimization, simulation, and prediction problems in the industry. Examples are long-term and short-term demand forecasting, capacity planning, driver scheduling, vehicle routing, and equipment rebalancing problems. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA