Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
-
Featured news
-
EACL 20232023We explore zero-shot adaptation, where a general-domain model has access to customer or domain specific parallel data at inference time, but not during training. We build on the idea of Retrieval Augmented Translation (RAT) where top-k in-domain fuzzy matches are found for the source sentence, and target-language translations of those fuzzy-matched sentences are provided to the translation model at inference
-
The Web Conference 20232023Approximate K-Nearest Neighbor Search (AKNNS) has now become ubiquitous in modern applications, such as a fast search procedure with two-tower deep learning models. Graph-based methods for AKNNS in particular have received great attention due to their superior performance. These methods rely on greedy graph search to traverse the data points as embedding vectors in a database. Under this greedy search scheme
-
ICASSP 20232023Query Rewriting (QR) plays a critical role in large-scale dialogue systems for reducing frictions. When there is an entity error, it imposes extra challenges for a dialogue system to produce satisfactory responses. In this work, we propose KG-ECO: Knowledge Graph enhanced Entity COrrection for query rewriting, an entity correction system with corrupt entity span detection and entity retrieval/re-ranking
-
AISTATS 20232023Forecasts at different time granularities are required in practice for addressing various business problems starting from short-term operational to medium-term tactical and to long-term strategic planning. These forecasting problems are usually treated independently by learning different ML models which results in forecasts that are not consistent with the temporal aggregation structure, leading to inefficient
-
ICASSP 20232023Robustness to packet loss is one of the main ongoing challenges in real-time speech communication. Deep packet loss concealment (PLC) techniques have recently demonstrated improved quality compared to traditional PLC. Despite that, all PLC techniques hit fundamental limitations when too much acoustic information is lost. To reduce losses in the first place, data is commonly sent multiple times using various
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all