Neural encoding enables more-efficient recovery of lost audio packets

By leveraging neural vocoding, Amazon Chime SDK’s new deep-redundancy (DRED) technology can reconstruct long sequences of lost packets with little bandwidth overhead.

Packet loss is a big problem for real-time voice communication over the Internet. Everyone has been in the situation where the network is becoming unreliable and enough packets are getting lost that it's hard — or impossible — to make out what the other person is saying.

One way to fight packet loss is through redundancy, in which each new packet includes information about prior packets. But existing redundancy schemes either have limited scope — carrying information only about the immediately preceding packet, for instance — or scale inefficiently.

The Deep REDundancy (DRED) technology from the Amazon Chime SDK team significantly improves quality and intelligibility under packet loss by efficiently transmitting large amounts of redundant information. Our approach leverages the ability of neural vocoders to reconstruct informationally rich speech signals from informationally sparse frequency spectrum snapshots, and we use a neural encoder to compress those snapshots still further. With this approach, we are able to load a single packet with information about as many as 50 prior packets (one second of speech) with minimal increase in bandwidth.

We describe our approach in a paper that we will present at this year’s ICASSP.

Redundant audio

All modern codecs (coder/decoders) have so-called packet-loss-concealment (PLC) algorithms that attempt to guess the content of lost packets. Those algorithms work fine for infrequent, short losses, as they can extrapolate phonemes to fill in gaps of a few tens of milliseconds. However, they cannot (and certainly should not try to) predict the next phoneme or word from the conversation. To deal with significantly degraded networks, we need more than just PLC.

Related content
Combining classic signal processing with deep learning makes method efficient enough to run on a phone.

One option is the 25-year-old spec for REDundant audio data (often referred to as just RED). Despite its age, RED is still in use today and is one of the few ways of transmitting redundant data for WebRTC, a popular open-source framework for real-time communication over the Web. RED has the advantage of being flexible and simple to use, but it is not very efficient. Transmitting two copies of the audio requires ... twice the bitrate.

The Opus audio codec — which is the default codec for WebRTC — introduced a more efficient scheme for redundancy called low-bit-rate redundancy (LBRR). With LBRR, each new audio packet can include a copy of the previous packet, encoded at a lower bit rate. That has the advantage of lowering the bit rate overhead. Also, because the scheme is deeply integrated into Opus, it can be simpler to use than RED.

That being said, the Opus LBRR is limited to just one frame of redundancy, so it cannot do much in the case of a long burst of lost packets. RED does not have that limitation, but transmitting a large number of copies would be impractical due to the overhead. There is always the risk that the extra redundancy will end up causing congestion and more losses.

LBRR and PLC.png
With every new voice packet (blue), Opus’s low-bit-rate-redundancy (LBRR) mechanism includes a compressed copy of the previous packet (green). When three consecutive packets are lost (red x’s), two of them are unrecoverable, and a packet-loss-concealment (PLC) algorithm must fill in the gaps.

Deep REDundancy (DRED)

In the past few years, we have seen neural speech codecs that can produce good quality speech at only a fraction of the bit rate required by traditional speech codecs — typically less than three kilobits per second (3 kb/s). That was unthinkable just a few years ago. But for most real-time-communication applications, neural codecs aren't that useful, because just the packet headers required by the IP/UDP/RTP protocols take up 16 kb/s.

However, for the purpose of transmitting a large amount of redundancy, a neural speech codec can be very useful, and we propose a Deep REDundancy codec that has been specifically designed for that purpose. It has a different set of constraints than a regular speech codec:

  • The redundancy in different packets needs to be independent (that's why we call it redundancy in the first place). However, within each packet, we can use as much prediction and other redundancy elimination as we like since IP packets are all-or-nothing (no corrupted packets).
  • We want to encode meaningful acoustic features rather than abstract (latent) ones to avoid having to standardize more than needed and to leave room for future technology improvements.
  • There is a large degree of overlap between consecutive redundancy packets. The encoder should leverage this overlap and should not need to encode each redundancy packet from scratch. The encoding complexity should remain constant even as we increase the amount of redundancy.
  • Since short bursts are more common than long ones, the redundancy decoder should be able to decode the most recent audio quickly but may take longer to decode older signals.
  • The Opus decoder has to be able to switch between decoding DRED, PLC, LBRR, and regular packets at any time.

Neural vocoders

Let's take a brief detour and discuss neural vocoders. A vocoder is an algorithm that takes in acoustic features that describe the spectrum of a speech signal over a short span of time and generates the corresponding (continuous) speech signal. Vocoders can be used in text-to-speech, where acoustic features are generated from text, and for speech compression, where the encoder transmits acoustic features, and a vocoder generates speech from the features.

Related content
A text-to-speech system, which converts written text into synthesized speech, is what allows Alexa to respond verbally to requests or commands...

Vocoders have been around since the ’70s, but none had ever achieved acceptable speech quality — until neural vocoders like WaveNet came about and changed everything. WaveNet itself was all but impossible to implement in real time (even on a GPU), but it led to lower-complexity neural vocoders, like the LPCNet vocoder we're using here.

Like many (but not all) neural vocoders, LPCNet is autoregressive, in that it produces the audio samples that best fit the previous samples — whether the previous samples are real speech or speech synthesized by LPCNet itself. As we will see below, that property can be very useful.

DRED architecture

The vocoder’s inputs — the acoustic features — don't describe the full speech waveform, but they do describe how the speech sounds to the human ear. That makes them lightweight and predictable and thus ideal for transmitting large amounts of redundancy.

The idea behind DRED is to compress the features as much as possible while ensuring that the recovered speech is still intelligible. When multiple packets go missing, we wait for the first packet to arrive and decode the features it contains. We then send those features to a vocoder — in our case, LPCNet — which re-synthesizes the missing speech for us from the point where the loss occurred. Once the "hole" is filled, we resume with Opus decoding as usual.

Combining the constraints listed earlier leads to the encoder architecture depicted below, which enables efficient encoding of highly redundant acoustic features — so that extended holes can be filled at the decoder.

Codec.png
Every 20 milliseconds, the DRED encoder encodes the last 40 milliseconds of speech. The decoder works backward, as the most recently transmitted audio is usually the most important.

The DRED encoder works as follows. Every 20 milliseconds (ms), it produces a new vector that contains information about the last 40 ms of speech. Given this overlap, we need only half of the vectors to reconstruct the complete speech. To avoid our redundancy’s being itself redundant, in a given 20 ms packet, we include only every other redundancy coding vector, so the redundancy encoded in a given packet covers nonoverlapping segments of the past speech. In terms of the figure above, the signal can be recovered from just the odd/purple blocks or just the even/blue blocks.

Related content
The team’s non-real-time system is the top performer, while its real-time system finishes third overall and second among real-time systems — despite using only 4% of a CPU core.

The degree of redundancy is determined by the number of past chunks included in each packet; each chunk included in the redundancy coding corresponds to 40 ms of speech that can be recovered. Furthermore, rather than representing each chunk independently, the encoder takes advantage of the correlation between successive chunks and extracts a sort of interchunk difference to encode.

For decoding, to be able to synthesize the whole sequence, all we need is a starting point. But rather than decoding forward in time, as would be intuitive, we choose an initial state that corresponds to the most recent chunk; from there, we decode going backward in time. That means we can get quickly to the most recent audio, which is more likely to be useful. It also means that we can transmit as much — or as little — redundancy as we want just by choosing how many chunks to include in a packet.

Rate-distortion-optimized variational autoencoder

Now let's get into the details of how we minimize the bit rate to code our redundancy. Here we turn to a widely used method in the video coding world, rate distortion optimization (RDO), which means trying to simultaneously reduce the bit rate and the distortion we cause to the speech. In a regular autoencoder, we train an encoder to find a simple — typically, low-dimensional — vector representation of an input that can then be decoded back to something close to the original.

In our rate-distortion-optimized variational autoencoder (RDO-VAE), instead of imposing a limit on the dimensionality of the representation, we directly limit the number of bits required to code that representation. We can estimate the actual rate (in bits) required to code the latent representation, assuming entropy coding of a quantized Laplace distribution. As a result, not only do we automatically optimize the feature representation, but the training process automatically discards any useless dimensions by setting them to zero. We don't need to manually choose the number of dimensions.

Moreover, by varying the rate-distortion trade-off, we can train a rate-controllable quantizer. That allows us to use better quality for the most recent speech (which is more likely to be used) and a lower quality for older speech that would be used only for a long burst of loss. In the end, we use an average bit rate of around 500 bits/second (0.5 kb/s) and still have enough information to reconstruct intelligible speech.

Once we include DRED, this is what the packet loss scenario described above would look like:

DRED vs. LBRR.png
With LBRR, each new packet (blue) includes a compressed copy of the previous packet (green); with DRED, it includes highly compressed versions of up to 50 prior packets (red). In this case, DRED's redundancy is set at 140 ms (seven packets).

Although it is illustrated for just 70 milliseconds of redundancy, we scale this up to one full second of redundancy contained in each 20-millisecond packet. That's 50 copies of the information being sent, on the assumption that at least one will make it to its destination and enable reconstruction of the original speech.

Revisiting packet loss concealment

So what happens when we lose a packet and don't have any DRED data for it? We still need to play out something — and ideally not zeros. In that case, we can just guess. Over a short period of time, we can still predict acoustic features reasonably well and then ask LPCNet to fill in the missing audio based on those features. That is essentially what PLC does, and doing it with a neural vocoder like LPCNet works better than using traditional PLC algorithms like the one that's currently integrated into Opus. In fact, our neural PLC algorithm recently placed second in the Interspeech 2022 Audio Deep Packet Loss Concealment Challenge.

Results

How much does DRED improve speech quality and intelligibility under lossy network conditions? Let's start with a clip compressed with Opus wideband at 24 kb/s, plus 16 kb/s of LBRR redundancy (40 kb/s total). This is what we get without loss:

Clean audio

To show what happens in lossy conditions, let's use a particularly difficult — but real — loss sequence taken from the PLC Challenge. If we use the standard Opus redundancy (LBRR) and PLC, the resulting audio is missing large chunks that just cannot be filled:

Lossy audio with LBRR and PLC

If we add our DRED coding with one full second of redundancy included in each packet, at a cost of about 32 kb/s, the missing speech can be entirely recovered:

Lossy audio with DRED
Results.png
Overall results of DRED's evaluation on the full dataset for the original PLC Challenge, using mean opinion score (MOS).

The example above is based on just one speech sequence, but we evaluated DRED on the full dataset for the original PLC Challenge, using mean opinion score (MOS) to aggregate the judgments of human reviewers. The results show that DRED alone (no LBRR) can reduce the impact of packet loss by about half even compared to our previous neural PLC. Also interesting is the fact that LBRR still provides a benefit even when DRED is used. With both LBRR and DRED, the impact of packet loss becomes very small, with just a 0.1 MOS degradation compared to the original, uncompressed speech.

This work is only one example of how Amazon is contributing to improving Opus. Our open-source neural PLC and DRED implementations are available on this development branch, and we welcome feedback and outside collaboration. We are also engaging with the IETF with the goal of updating the Opus standard in a fully compatible way. Our two Internet drafts (draft 1 | draft 2) offer more details on what we are proposing.

Research areas

Related content

US, WA, Seattle
The Artificial General Intelligent team (AGI) seeks a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP) and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and a passion for pushing boundaries in the field. They thrive in fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA
US, WA, Redmond
Project Kuiper is an initiative to increase global broadband access through a constellation of 3,236 satellites in low Earth orbit (LEO). Its mission is to bring fast, affordable broadband to unserved and underserved communities around the world. Project Kuiper will help close the digital divide by delivering fast, affordable broadband to a wide range of customers, including consumers, businesses, government agencies, and other organizations operating in places without reliable connectivity. As an Applied Scientist on the team you will responsible for building out and maintaining the algorithms and software services behind one of the world’s largest satellite constellations. You will be responsible for developing algorithms and applications that provide mission critical information derived from past and predicted satellite orbits to other systems and organizations rapidly, reliably, and at scale. You will be focused on contributing to the design and analysis of software systems responsible across a broad range of areas required for automated management of the Kuiper constellation. You will apply knowledge of mathematical modeling, optimization algorithms, astrodynamics, state estimation, space systems, and software engineering across a wide variety of problems to enable space operations at an unprecedented scale. You will develop features for systems to interface with internal and external teams, predict and plan communication opportunities, manage satellite orbits determination and prediction systems, develop analysis and infrastructure to monitor and support systems performance. Your work will interface with various subsystems within Project Kuiper and Amazon, as well as with external organizations, to enable engineers to safely and efficiently manage the satellite constellation. The ideal candidate will be detail oriented, strong organizational skills, able to work independently, juggle multiple tasks at once, and maintain professionalism under pressure. You should have proven knowledge of mathematical modeling and optimization along with strong software engineering skills. You should be able to independently understand customer requirements, and use data-driven approaches to identify possible solutions, select the best approach, and deliver high-quality applications. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. About the team The Constellation Management & Space Safety team maintains and builds the software services responsible for maintaining situational awareness of Kuiper satellites through their entire lifecycle in space. We coordinate with internal and external organizations to maintain the nominal operational state of the constellation. We build automated systems that use satellite telemetry and other relevant data to predict future orbits, plan maneuvers to avoid high risk close approaches with other objects in space, keep satellites in the desired locations, and exchange data with external organizations. We provide visibility information that is used to predict and establish communication channels for Kuiper satellites. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Recruitment and Success organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential by using our scaled, automated, and self-service tools. We aim to accelerate the growth of Sellers by providing tools and insights that enable them to make better and faster decisions at each step of selection management. To accomplish this, we offer intelligent insights that are both detailed and actionable, allowing Sellers to introduce new products and engage with customers effectively. We leverage extensive structured and unstructured data to generate science-based insights about their business. Furthermore, we provide personalized recommendations tailored to individual Sellers' business objectives in a user-friendly format. These insights and recommendations are integrated into our products, including Amazon Brand Analytics (ABA), Product Opportunity Explorer (OX), and Manage Your Growth (MYG). We are looking for a talented and passionate Sr. Research Scientist to lead our research endeavors and develop world-class statistical and machine learning models. The successful candidate will work closely with Product Managers (PM), User Experience (UX) designers, engineering teams, and Seller Growth Consulting teams to provide actionable insights that drive improvements in Seller businesses. Key job responsibilities You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. About the team The Seller Growth science team aims to provide data and science solutions to drive Seller growth and create better Seller experiences. We structure our science domain with three key themes and two horizontal components. We discover the opportunity space by identifying opportunities with unrealized potential, then generate actionable analytics to identify high value actions (HVAs) that unlock the opportunity space, and finally, empower Sellers with personalized Growth Plans and differentiated treatment that help them realize their potential. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, London
Amazon Advertising is looking for a Senior Applied Scientist to join its brand new initiative that powers Amazon’s contextual advertising product. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. We are looking for a dynamic, innovative and accomplished Senior Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML and Artificial General Intelligence based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. About the team The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
At Amazon, we are committed to being the Earth’s most customer-centric company. The International Technology group (InTech) owns the enhancement and delivery of Amazon’s cutting-edge engineering to all the varied customers and cultures of the world. We do this through a combination of partnerships with other Amazon technical teams and our own innovative new projects. You will be joining the Tools and Machine learning (Tamale) team. As part of InTech, Tamale strives to solve complex catalog quality problems using challenging machine learning and data analysis solutions. You will be exposed to cutting edge big data and machine learning technologies, along to all Amazon catalog technology stack, and you'll be part of a key effort to improve our customers experience by tackling and preventing defects in items in Amazon's catalog. We are looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading machine learning solutions. We strongly value your hard work and obsession to solve complex problems on behalf of Amazon customers. Key job responsibilities We look for applied scientists who possess a wide variety of skills. As the successful applicant for this role, you will with work closely with your business partners to identify opportunities for innovation. You will apply machine learning solutions to automate manual processes, to scale existing systems and to improve catalog data quality, to name just a few. You will work with business leaders, scientists, and product managers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will be part of team of 5 scientists and 13 engineers working on solving data quality issues at scale. You will be able to influence the scientific roadmap of the team, setting the standards for scientific excellence. You will be working with state-of-the-art models, including image to text, LLMs and GenAI. Your work will improve the experience of millions of daily customers using Amazon in Europe and in other regions. You will have the chance to have great customer impact and continue growing in one of the most innovative companies in the world. You will learn a huge amount - and have a lot of fun - in the process! This position will be based in Madrid, Spain We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
IN, KA, Bangalore
Appstore Quality tech team builds tools, using AI and engineering techniques to provide the best quality apps to Amazon Appstore users. We are a team of highly-motivated, engaged, and responsive professionals who enable the core testing and quality infrastructure of Amazon Appstore. Come join our team and be a part of history as we deliver results for our customers. Appstore Quality team's mission is to automate all types of functional, non functional, and compliance checks on apps submitted by appstore app developers to enable north star vision of publishing apps in under 5 hours. Our team uses various ML/AI/Generative AI techniques to automatically detect violations in images and text metadata submitted by developers. We are working on ambitious project AI projects such as building LLM, auto navigate a mobile app to detect inside app issues and violations. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. This role involves working closely with Sr Data Scientist, Principal engineer, and engineering team to build ML and AL based solutions in meeting our north start vision. Key job responsibilities • Implement statistical methods to solve specific business problems utilizing code (Python, Scala, etc.). • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Collaborate with program management, product management, software developers, data engineering, and business leaders to provide science support, and communicate feedback; develop, test and deploy a wide range of statistical, econometric, and machine learning models. • Build customer-facing reporting tools to provide insights and metrics which track model performance and explain variance. • Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our solutions, as well as sharing insights and recommendations. • Earn the trust of your customers by continuing to constantly obsess over their needs and helping them solve their problems by leveraging technology • Excellent prompt engineering skillset with a deep knowledge of LLMs, embeddings, transformer models. • Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team In Appstore, “We entertain, and delight, hundreds of millions of people across devices with a vast selection of relevant apps, games, and services by making it trivially easy for developers to deliver”. Appstore team enables the customer and developer flywheel on devices by enabling developers to seamlessly launch and manage their apps/ in-app content on Amazon. It helps customers discover, buy and engage with these apps on Fire TV, Fire Tablets and mobile devices. The technologies we build on vary from device software, to high scale services, to efficient tools for developers. We are open to hiring candidates to work out of one of the following locations: Bangalore, KA, IND
US, WA, Bellevue
Want to be part of the team whose mission is to expand Alexa to new countries, languages, devices and cultures? The Alexa International team makes it happen. Our customers are very diverse in where they live, the languages they speak to Alexa, the devices they use and the content that matters most. In turn, our problems are diverse and need innovative solutions. We are seeking a Senior Applied Science Manager who will play a key role in the next generation of AI powered Conversational Assistants. Key job responsibilities Lead and manage a team of applied and research scientists responsible for building multilingual experiences Collaborate with cross-functional teams to ensure that Amazon’s AI models are aligned with human preferences. Identify and prioritize research opportunities that have the potential to significantly impact our AI systems. Mentor and guide team members to achieve their career goals and objectives. Communicate research findings and progress to senior leadership and stakeholders. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: One Washington Park, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3 / edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of experience as a Data Scientist, Data Engineer, or other occupation/position/job title involving research and data analysis. Experience may be gained concurrently and must include one (1) year in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Working with Customer, Content, or Product data modeling and extraction - Using database technologies such as SQL or ETL - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. Alternatively, will accept a Bachelor's and four (4) years of experience. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL157. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA