Neural encoding enables more-efficient recovery of lost audio packets

By leveraging neural vocoding, Amazon Chime SDK’s new deep-redundancy (DRED) technology can reconstruct long sequences of lost packets with little bandwidth overhead.

Packet loss is a big problem for real-time voice communication over the Internet. Everyone has been in the situation where the network is becoming unreliable and enough packets are getting lost that it's hard — or impossible — to make out what the other person is saying.

One way to fight packet loss is through redundancy, in which each new packet includes information about prior packets. But existing redundancy schemes either have limited scope — carrying information only about the immediately preceding packet, for instance — or scale inefficiently.

The Deep REDundancy (DRED) technology from the Amazon Chime SDK team significantly improves quality and intelligibility under packet loss by efficiently transmitting large amounts of redundant information. Our approach leverages the ability of neural vocoders to reconstruct informationally rich speech signals from informationally sparse frequency spectrum snapshots, and we use a neural encoder to compress those snapshots still further. With this approach, we are able to load a single packet with information about as many as 50 prior packets (one second of speech) with minimal increase in bandwidth.

We describe our approach in a paper that we will present at this year’s ICASSP.

Redundant audio

All modern codecs (coder/decoders) have so-called packet-loss-concealment (PLC) algorithms that attempt to guess the content of lost packets. Those algorithms work fine for infrequent, short losses, as they can extrapolate phonemes to fill in gaps of a few tens of milliseconds. However, they cannot (and certainly should not try to) predict the next phoneme or word from the conversation. To deal with significantly degraded networks, we need more than just PLC.

Related content
Combining classic signal processing with deep learning makes method efficient enough to run on a phone.

One option is the 25-year-old spec for REDundant audio data (often referred to as just RED). Despite its age, RED is still in use today and is one of the few ways of transmitting redundant data for WebRTC, a popular open-source framework for real-time communication over the Web. RED has the advantage of being flexible and simple to use, but it is not very efficient. Transmitting two copies of the audio requires ... twice the bitrate.

The Opus audio codec — which is the default codec for WebRTC — introduced a more efficient scheme for redundancy called low-bit-rate redundancy (LBRR). With LBRR, each new audio packet can include a copy of the previous packet, encoded at a lower bit rate. That has the advantage of lowering the bit rate overhead. Also, because the scheme is deeply integrated into Opus, it can be simpler to use than RED.

That being said, the Opus LBRR is limited to just one frame of redundancy, so it cannot do much in the case of a long burst of lost packets. RED does not have that limitation, but transmitting a large number of copies would be impractical due to the overhead. There is always the risk that the extra redundancy will end up causing congestion and more losses.

LBRR and PLC.png
With every new voice packet (blue), Opus’s low-bit-rate-redundancy (LBRR) mechanism includes a compressed copy of the previous packet (green). When three consecutive packets are lost (red x’s), two of them are unrecoverable, and a packet-loss-concealment (PLC) algorithm must fill in the gaps.

Deep REDundancy (DRED)

In the past few years, we have seen neural speech codecs that can produce good quality speech at only a fraction of the bit rate required by traditional speech codecs — typically less than three kilobits per second (3 kb/s). That was unthinkable just a few years ago. But for most real-time-communication applications, neural codecs aren't that useful, because just the packet headers required by the IP/UDP/RTP protocols take up 16 kb/s.

However, for the purpose of transmitting a large amount of redundancy, a neural speech codec can be very useful, and we propose a Deep REDundancy codec that has been specifically designed for that purpose. It has a different set of constraints than a regular speech codec:

  • The redundancy in different packets needs to be independent (that's why we call it redundancy in the first place). However, within each packet, we can use as much prediction and other redundancy elimination as we like since IP packets are all-or-nothing (no corrupted packets).
  • We want to encode meaningful acoustic features rather than abstract (latent) ones to avoid having to standardize more than needed and to leave room for future technology improvements.
  • There is a large degree of overlap between consecutive redundancy packets. The encoder should leverage this overlap and should not need to encode each redundancy packet from scratch. The encoding complexity should remain constant even as we increase the amount of redundancy.
  • Since short bursts are more common than long ones, the redundancy decoder should be able to decode the most recent audio quickly but may take longer to decode older signals.
  • The Opus decoder has to be able to switch between decoding DRED, PLC, LBRR, and regular packets at any time.

Neural vocoders

Let's take a brief detour and discuss neural vocoders. A vocoder is an algorithm that takes in acoustic features that describe the spectrum of a speech signal over a short span of time and generates the corresponding (continuous) speech signal. Vocoders can be used in text-to-speech, where acoustic features are generated from text, and for speech compression, where the encoder transmits acoustic features, and a vocoder generates speech from the features.

Related content
A text-to-speech system, which converts written text into synthesized speech, is what allows Alexa to respond verbally to requests or commands...

Vocoders have been around since the ’70s, but none had ever achieved acceptable speech quality — until neural vocoders like WaveNet came about and changed everything. WaveNet itself was all but impossible to implement in real time (even on a GPU), but it led to lower-complexity neural vocoders, like the LPCNet vocoder we're using here.

Like many (but not all) neural vocoders, LPCNet is autoregressive, in that it produces the audio samples that best fit the previous samples — whether the previous samples are real speech or speech synthesized by LPCNet itself. As we will see below, that property can be very useful.

DRED architecture

The vocoder’s inputs — the acoustic features — don't describe the full speech waveform, but they do describe how the speech sounds to the human ear. That makes them lightweight and predictable and thus ideal for transmitting large amounts of redundancy.

The idea behind DRED is to compress the features as much as possible while ensuring that the recovered speech is still intelligible. When multiple packets go missing, we wait for the first packet to arrive and decode the features it contains. We then send those features to a vocoder — in our case, LPCNet — which re-synthesizes the missing speech for us from the point where the loss occurred. Once the "hole" is filled, we resume with Opus decoding as usual.

Combining the constraints listed earlier leads to the encoder architecture depicted below, which enables efficient encoding of highly redundant acoustic features — so that extended holes can be filled at the decoder.

Codec.png
Every 20 milliseconds, the DRED encoder encodes the last 40 milliseconds of speech. The decoder works backward, as the most recently transmitted audio is usually the most important.

The DRED encoder works as follows. Every 20 milliseconds (ms), it produces a new vector that contains information about the last 40 ms of speech. Given this overlap, we need only half of the vectors to reconstruct the complete speech. To avoid our redundancy’s being itself redundant, in a given 20 ms packet, we include only every other redundancy coding vector, so the redundancy encoded in a given packet covers nonoverlapping segments of the past speech. In terms of the figure above, the signal can be recovered from just the odd/purple blocks or just the even/blue blocks.

Related content
The team’s non-real-time system is the top performer, while its real-time system finishes third overall and second among real-time systems — despite using only 4% of a CPU core.

The degree of redundancy is determined by the number of past chunks included in each packet; each chunk included in the redundancy coding corresponds to 40 ms of speech that can be recovered. Furthermore, rather than representing each chunk independently, the encoder takes advantage of the correlation between successive chunks and extracts a sort of interchunk difference to encode.

For decoding, to be able to synthesize the whole sequence, all we need is a starting point. But rather than decoding forward in time, as would be intuitive, we choose an initial state that corresponds to the most recent chunk; from there, we decode going backward in time. That means we can get quickly to the most recent audio, which is more likely to be useful. It also means that we can transmit as much — or as little — redundancy as we want just by choosing how many chunks to include in a packet.

Rate-distortion-optimized variational autoencoder

Now let's get into the details of how we minimize the bit rate to code our redundancy. Here we turn to a widely used method in the video coding world, rate distortion optimization (RDO), which means trying to simultaneously reduce the bit rate and the distortion we cause to the speech. In a regular autoencoder, we train an encoder to find a simple — typically, low-dimensional — vector representation of an input that can then be decoded back to something close to the original.

In our rate-distortion-optimized variational autoencoder (RDO-VAE), instead of imposing a limit on the dimensionality of the representation, we directly limit the number of bits required to code that representation. We can estimate the actual rate (in bits) required to code the latent representation, assuming entropy coding of a quantized Laplace distribution. As a result, not only do we automatically optimize the feature representation, but the training process automatically discards any useless dimensions by setting them to zero. We don't need to manually choose the number of dimensions.

Moreover, by varying the rate-distortion trade-off, we can train a rate-controllable quantizer. That allows us to use better quality for the most recent speech (which is more likely to be used) and a lower quality for older speech that would be used only for a long burst of loss. In the end, we use an average bit rate of around 500 bits/second (0.5 kb/s) and still have enough information to reconstruct intelligible speech.

Once we include DRED, this is what the packet loss scenario described above would look like:

DRED vs. LBRR.png
With LBRR, each new packet (blue) includes a compressed copy of the previous packet (green); with DRED, it includes highly compressed versions of up to 50 prior packets (red). In this case, DRED's redundancy is set at 140 ms (seven packets).

Although it is illustrated for just 70 milliseconds of redundancy, we scale this up to one full second of redundancy contained in each 20-millisecond packet. That's 50 copies of the information being sent, on the assumption that at least one will make it to its destination and enable reconstruction of the original speech.

Revisiting packet loss concealment

So what happens when we lose a packet and don't have any DRED data for it? We still need to play out something — and ideally not zeros. In that case, we can just guess. Over a short period of time, we can still predict acoustic features reasonably well and then ask LPCNet to fill in the missing audio based on those features. That is essentially what PLC does, and doing it with a neural vocoder like LPCNet works better than using traditional PLC algorithms like the one that's currently integrated into Opus. In fact, our neural PLC algorithm recently placed second in the Interspeech 2022 Audio Deep Packet Loss Concealment Challenge.

Results

How much does DRED improve speech quality and intelligibility under lossy network conditions? Let's start with a clip compressed with Opus wideband at 24 kb/s, plus 16 kb/s of LBRR redundancy (40 kb/s total). This is what we get without loss:

Clean audio

To show what happens in lossy conditions, let's use a particularly difficult — but real — loss sequence taken from the PLC Challenge. If we use the standard Opus redundancy (LBRR) and PLC, the resulting audio is missing large chunks that just cannot be filled:

Lossy audio with LBRR and PLC

If we add our DRED coding with one full second of redundancy included in each packet, at a cost of about 32 kb/s, the missing speech can be entirely recovered:

Lossy audio with DRED
Results.png
Overall results of DRED's evaluation on the full dataset for the original PLC Challenge, using mean opinion score (MOS).

The example above is based on just one speech sequence, but we evaluated DRED on the full dataset for the original PLC Challenge, using mean opinion score (MOS) to aggregate the judgments of human reviewers. The results show that DRED alone (no LBRR) can reduce the impact of packet loss by about half even compared to our previous neural PLC. Also interesting is the fact that LBRR still provides a benefit even when DRED is used. With both LBRR and DRED, the impact of packet loss becomes very small, with just a 0.1 MOS degradation compared to the original, uncompressed speech.

This work is only one example of how Amazon is contributing to improving Opus. Our open-source neural PLC and DRED implementations are available on this development branch, and we welcome feedback and outside collaboration. We are also engaging with the IETF with the goal of updating the Opus standard in a fully compatible way. Our two Internet drafts (draft 1 | draft 2) offer more details on what we are proposing.

Research areas

Related content

US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
At Amazon, we're working to be the world’s most customer-centric company. Driving innovation on behalf of customers is core to our mission, and this position supports one of our largest business to deliver on this mission. As member of the Operations Insights, Planning, Analytics and Technology (IPAT) team, this position owns monthly change management, Controllership and Governance, Risk and Compliance (GRC) process for World Wide Operations IPAT team. Key job responsibilities In the midst of our rapidly expanding scope, we are actively seeking a Data Scientist who possesses strategic thinking skills and a knack for creative problem-solving. This Data Scientist will play a pivotal role in supporting hyper-growth projects. Collaborating closely with cross-functional finance and business leaders within the WW Operations organization, this role should be skilled in ML models development, Optimization models, model implementation, hypothesis testing, high quality analysis, database design, be comfortable dealing with large and complex data sets, and using visualization tools. Join us on this captivating journey in an exhilarating domain, and become a part of making history!
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.