Neural text-to-speech makes speech synthesizers much more versatile

A text-to-speech system, which converts written text into synthesized speech, is what allows Alexa to respond verbally to requests or commands. Through a service called Amazon Polly, text-to-speech is also a technology that Amazon Web Services offers to its customers.

Last year, both Alexa and Polly evolved toward neural-network-based text-to-speech systems, which synthesize speech from scratch, rather than the earlier unit-selection method, which strung together tiny snippets of pre-recorded sounds.

In user studies, people tend to find speech produced by neural text-to-speech (NTTS) systems more natural-sounding than speech produced by unit selection. But the real advantage of NTTS is its adaptability, something we demonstrated last year in our work on changing the speaking style (“newscaster” versus “neutral”) of an NTTS system.

At this year’s Interspeech, two new papers from the Amazon Text-to-Speech group further demonstrate the adaptability of NTTS. One is on prosody transfer, or synthesizing speech that mimics the prosody — shifts in tempo, pitch, and volume — of a recording. In essence, prosody transfer lets you choose whose voice you will hear reading back recorded content, with all the original vocal inflections preserved.

The other paper is on universal vocoding. An NTTS system outputs a series of spectrograms, snapshots of the energies in different audio frequency bands over short periods of time. But spectrograms don’t contain enough information to directly produce a natural-sounding speech signal. A vocoder is required to fill in the missing details.

A typical neural vocoder is trained on data from a single speaker. But in our paper, we report a vocoder trained on data from 74 speakers in 17 languages. In our experiments, for any given speaker, the universal vocoder outperformed speaker-specific vocoders — even when it had never seen data from that particular speaker before.

Our first paper, on prosody transfer, is titled “Fine-Grained Robust Prosody Transfer for Single-Speaker Neural Text-to-Speech”. Past attempts at prosody transfer have involved neural networks that take speaker-specific spectrograms and the corresponding text as input and output spectrograms that represent a different voice. But these tend not to adapt well to input voices that they haven’t heard before.

We adopted several techniques to make our network more general, including not using raw spectrograms as input. Instead, our system uses prosodic features that are easier to normalize.

First, our system aligns the speech signal with the text at the level of phonemes, the smallest units of speech. Then, for each phoneme, the system extracts prosodic features — such as changes in pitch or volume — from the spectrograms. These features can be normalized, which makes them easy to apply to new voices.

“But Germany thinks she can manage it … ”OriginalTransferredSynthesized
"I knew of old its little ways ... "OriginalTransferredSynthesized
“Good old Harry … ”OriginalTransferredSynthesized

Three different versions of the same three text excerpts. "Original" denotes the original recording of the text by a live speaker. "Transferred" denotes a synthesized voice with prosody transferred from the original recording by our system. And "Synthesized" denotes the synthesis of the same excerpt from scratch, using existing Amazon TTS technology.

This approach works well when the system has a clean transcript to work with — as when, for instance, the input recording is a reading of a known text. But we also examine the case in which a clean transcript isn’t available.

In that instance, we run the input speech through an automatic speech recognizer, like the one that Alexa uses to process customer requests. Speech recognizers begin by constructing multiple hypotheses about the sequences of phonemes that correspond to a given input signal, and they represent those hypotheses as probability distributions. Later, they use higher-level information about word sequence frequencies to decide between hypotheses.

When we don’t have reliable source text, our system takes the speech recognizer’s low-level phoneme-sequence probabilities as inputs. This allows it to learn general correlations between phonemes and prosodic features, rather than trying to force acoustic information to align with transcriptions that may be inaccurate.

In experiments, we find that the difference between the outputs of this textless prosody transfer system and a system trained using highly reliable transcripts is statistically insignificant.

Prosody_transfer_architecture.jpg._CB439112644_.jpg
The architecture of our prosody transfer system, both when speech transcripts are available (top left) and when they're not (top right). "Posteriograms" are sets of phonemic features predicted by an automatic speech recognition system.

Our second paper is titled “Towards Achieving Robust Universal Neural Vocoding”. In the past, researchers have used data from multiple speakers to train neural vocoders, but they didn’t expect their models to generalize to unfamiliar voices. Usually, the input to the model includes some indication of which speaker the voice belongs to.

We investigated whether it is possible to train a universal vocoder to attain state-of-the-art quality on voices it hasn’t previously encountered. The first step: create a diverse enough set of training data that the vocoder can generalize. Our data set comprised about 2,000 utterances each from 52 female and 22 male speakers, in 17 languages.

The next step: extensive testing of the resulting vocoder. We tested it on voices that it had heard before, voices that it hadn’t, topics that it had encountered before, topics that it hadn’t, languages that were familiar (such as English and Spanish), languages that weren’t (Ahmaric, Swahili, and Wolof), and a wide range of unusual speaking conditions, such as whispered or sung speech or speech with heavy background noise.

We compared the output of our vocoder to that of four baselines: natural speech, speaker-specific vocoders, and generalized vocoders trained on less diverse data — three- and seven-speaker data sets. Five listeners scored every output utterance of each vocoder according to the multiple stimuli with hidden reference and anchor (MUSHRA) test. Across the board, our vocoder outperformed the three digital baselines and usually came very close to the scores for natural speech.

Acknowledgments: Thomas Drugman, Srikanth Ronanki, Jonas Rohnke, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote, Alexis Moinet, Vatsal Aggarwal

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000