Neural text-to-speech makes speech synthesizers much more versatile

A text-to-speech system, which converts written text into synthesized speech, is what allows Alexa to respond verbally to requests or commands. Through a service called Amazon Polly, text-to-speech is also a technology that Amazon Web Services offers to its customers.

Last year, both Alexa and Polly evolved toward neural-network-based text-to-speech systems, which synthesize speech from scratch, rather than the earlier unit-selection method, which strung together tiny snippets of pre-recorded sounds.

In user studies, people tend to find speech produced by neural text-to-speech (NTTS) systems more natural-sounding than speech produced by unit selection. But the real advantage of NTTS is its adaptability, something we demonstrated last year in our work on changing the speaking style (“newscaster” versus “neutral”) of an NTTS system.

At this year’s Interspeech, two new papers from the Amazon Text-to-Speech group further demonstrate the adaptability of NTTS. One is on prosody transfer, or synthesizing speech that mimics the prosody — shifts in tempo, pitch, and volume — of a recording. In essence, prosody transfer lets you choose whose voice you will hear reading back recorded content, with all the original vocal inflections preserved.

The other paper is on universal vocoding. An NTTS system outputs a series of spectrograms, snapshots of the energies in different audio frequency bands over short periods of time. But spectrograms don’t contain enough information to directly produce a natural-sounding speech signal. A vocoder is required to fill in the missing details.

A typical neural vocoder is trained on data from a single speaker. But in our paper, we report a vocoder trained on data from 74 speakers in 17 languages. In our experiments, for any given speaker, the universal vocoder outperformed speaker-specific vocoders — even when it had never seen data from that particular speaker before.

Our first paper, on prosody transfer, is titled “Fine-Grained Robust Prosody Transfer for Single-Speaker Neural Text-to-Speech”. Past attempts at prosody transfer have involved neural networks that take speaker-specific spectrograms and the corresponding text as input and output spectrograms that represent a different voice. But these tend not to adapt well to input voices that they haven’t heard before.

We adopted several techniques to make our network more general, including not using raw spectrograms as input. Instead, our system uses prosodic features that are easier to normalize.

First, our system aligns the speech signal with the text at the level of phonemes, the smallest units of speech. Then, for each phoneme, the system extracts prosodic features — such as changes in pitch or volume — from the spectrograms. These features can be normalized, which makes them easy to apply to new voices.

“But Germany thinks she can manage it … ”OriginalTransferredSynthesized
"I knew of old its little ways ... "OriginalTransferredSynthesized
“Good old Harry … ”OriginalTransferredSynthesized

Three different versions of the same three text excerpts. "Original" denotes the original recording of the text by a live speaker. "Transferred" denotes a synthesized voice with prosody transferred from the original recording by our system. And "Synthesized" denotes the synthesis of the same excerpt from scratch, using existing Amazon TTS technology.

This approach works well when the system has a clean transcript to work with — as when, for instance, the input recording is a reading of a known text. But we also examine the case in which a clean transcript isn’t available.

In that instance, we run the input speech through an automatic speech recognizer, like the one that Alexa uses to process customer requests. Speech recognizers begin by constructing multiple hypotheses about the sequences of phonemes that correspond to a given input signal, and they represent those hypotheses as probability distributions. Later, they use higher-level information about word sequence frequencies to decide between hypotheses.

When we don’t have reliable source text, our system takes the speech recognizer’s low-level phoneme-sequence probabilities as inputs. This allows it to learn general correlations between phonemes and prosodic features, rather than trying to force acoustic information to align with transcriptions that may be inaccurate.

In experiments, we find that the difference between the outputs of this textless prosody transfer system and a system trained using highly reliable transcripts is statistically insignificant.

Prosody_transfer_architecture.jpg._CB439112644_.jpg
The architecture of our prosody transfer system, both when speech transcripts are available (top left) and when they're not (top right). "Posteriograms" are sets of phonemic features predicted by an automatic speech recognition system.

Our second paper is titled “Towards Achieving Robust Universal Neural Vocoding”. In the past, researchers have used data from multiple speakers to train neural vocoders, but they didn’t expect their models to generalize to unfamiliar voices. Usually, the input to the model includes some indication of which speaker the voice belongs to.

We investigated whether it is possible to train a universal vocoder to attain state-of-the-art quality on voices it hasn’t previously encountered. The first step: create a diverse enough set of training data that the vocoder can generalize. Our data set comprised about 2,000 utterances each from 52 female and 22 male speakers, in 17 languages.

The next step: extensive testing of the resulting vocoder. We tested it on voices that it had heard before, voices that it hadn’t, topics that it had encountered before, topics that it hadn’t, languages that were familiar (such as English and Spanish), languages that weren’t (Ahmaric, Swahili, and Wolof), and a wide range of unusual speaking conditions, such as whispered or sung speech or speech with heavy background noise.

We compared the output of our vocoder to that of four baselines: natural speech, speaker-specific vocoders, and generalized vocoders trained on less diverse data — three- and seven-speaker data sets. Five listeners scored every output utterance of each vocoder according to the multiple stimuli with hidden reference and anchor (MUSHRA) test. Across the board, our vocoder outperformed the three digital baselines and usually came very close to the scores for natural speech.

Acknowledgments: Thomas Drugman, Srikanth Ronanki, Jonas Rohnke, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote, Alexis Moinet, Vatsal Aggarwal

Research areas

Related content

US, WA, Bellevue
The Worldwide Design Engineering (WWDE) organization delivers innovative, effective and efficient engineering solutions that continually improve our customers’ experience. WWDE optimizes designs throughout the entire Amazon value chain providing overall fulfillment solutions from order receipt to last mile delivery. We are seeking a Simulation Scientist to assist in designing and optimizing the fulfillment network concepts and process improvement solutions using discrete event simulations for our World Wide Design Engineering Team. Successful candidates will be visionary technical expert and natural self-starter who have the drive to apply simulation and optimization tools to solve complex flow and buffer challenges during the development of next generation fulfillment solutions. The Simulation Scientist is expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Responsibilities: - Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages - Lead strategic modeling and simulation research projects to drive process design decisions - Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards - Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact - Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations - Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects - Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments - Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline - Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices - Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms - Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout - Deliver results according to project schedules and quality Key job responsibilities • You influence the scientific strategy across multiple teams in your business area. You support go/no-go decisions, build consensus, and assist leaders in making trade-offs. You proactively clarify ambiguous problems, scientific deficiencies, and where your team’s solutions may bottleneck innovation for other teams. A day in the life The dat-to-day activities include challenging and problem solving scenario with fun filled environment working with talented and friendly team members. The internal stakeholders are IDEAS team members, WWDE design vertical and Global robotics team members. The team solve problems related to critical Capital decision making related to Material handling equipment and technology design solutions. About the team World Wide Design EngineeringSimulation Team’s mission is to apply advanced simulation tools and techniques to drive process flow design, optimization, and improvement for the Amazon Fulfillment Network. Team develops flow and buffer system simulation, physics simulation, package dynamics simulation and emulation models for various Amazon network facilities, such as Fulfillment Centers (FC), Inbound Cross-Dock (IXD) locations, Sort Centers, Airhubs, Delivery Stations, and Air hubs/Gateways. These intricate simulation models serve as invaluable tools, effectively identifying process flow bottlenecks and optimizing throughput. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon's Global Fixed Marketing Campaign Measurement & Optimization (CMO) team is looking for a senior economic expert in causal inference and applied ML to advance the economic measurement, accuracy validation and optimization methodologies of Amazon's global multi-billion dollar fixed marketing spend. This is a thought leadership position to help set the long-term vision, drive methods innovation, and influence cross-org methods alignment. This role is also an expert in modeling and measuring marketing and customer value with proven capacity to innovate, scale measurement, and mentor talent. This candidate will also work closely with senior Fixed Marketing tech, product, finance and business leadership to devise science roadmaps for innovation and simplification, and adoption of insights to influence important resource allocation, fixed marketing spend and prioritization decisions. Excellent communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact. Key job responsibilities - Advance measurement, accuracy validation, and optimization methodology within Fixed Marketing. - Motivate and drive data generation to size. - Develop novel, innovative and scalable marketing measurement techniques and methodologies. - Enable product and tech development to scale science solutions and approaches. A day in the life - Propose and refine economic and scientific measurement, accuracy validation, and optimization methodology to improve Fixed Marketing models, outputs and business results - Brief global fixed marketing and retails executives about FM measurement and optimization approaches, providing options to address strategic priorities. - Collaborate with and influence the broader scientific methodology community. About the team CMO's vision is to maximizing long-term free cash flow by providing reliable, accurate and useful global fixed marketing measurement and decision support. The team measures and helps optimize the incremental impact of Amazon (Stores, AWS, Devices) fixed marketing investment across TV, Digital, Social, Radio, and many other channels globally. This is a fully self supported team composed of scientists, economists, engineers, and product/program leaders with S-Team visibility. We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, TX, Austin
The Workforce Solutions Analytics and Tech team is looking for a senior Applied Scientist who is interested in solving challenging optimization problems in the labor scheduling and operations efficiency space. We are actively looking to hire senior scientists to lead one or more of these problem spaces. Successful candidates will have a deep knowledge of Operations Research and Machine Learning methods, experience in applying these methods to large-scale business problems, the ability to map models into production-worthy code in Python or Java, the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers, and the excitement to take iterative approaches to tackle big research challenges. As a member of our team, you'll work on cutting-edge projects that directly impact over a million Amazon associates. This is a high-impact role with opportunities to designing and improving complex labor planning and cost optimization models. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. Key job responsibilities • Candidates will be responsible for developing solutions to better manage and optimize flexible labor capacity. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. As a senior scientist, you will also help coach/mentor junior scientists on the team. • In this role, you will be a technical leader in applied science research with significant scope, impact, and high visibility. You will lead science initiatives for strategic optimization and capacity planning. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. • Invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • Successfully deliver large or critical solutions to complex problems in the support of medium-to-large business goals. • Apply mathematical optimization techniques and algorithms to design optimal or near optimal solution methodologies to be used for labor planning. • Research, prototype, simulate, and experiment with these models and participate in the production level deployment in Python or Java. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA | Seattle, WA, USA | Tempe, AZ, USA
CA, BC, Vancouver
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. Our team works on a variety of projects, including state of the art generative AI, LLM finetuning, alignment, prompt engineering, benchmarking solutions. Key job responsibilities As a Applied Scientist will be expected to work on state of the art technologies which will result in papers publications, however you will not be only theorizing about the algorithms, but you will also have the opportunity to implement them and see how they behave in the field. As a tech lead, this Applied scientist will also be expected to define the research direction, and influence multiple teams to build solutions that improve Amazon and Alexa customer experience. This is an incredible opportunity to validate your research on one of the most exciting Amazon AI products, where assumptions can be tested against real business scenarios and supported by an abundance of data. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, WA, Seattle
At Amazon, a large portion of our business is driven by third-party Sellers who set their own prices. The Pricing science team is seeking a Sr. Applied Scientist to use statistical and machine learning techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems, helping Marketplace Sellers offer Customers great prices. This role will be a key member of an Advanced Analytics team supporting Pricing related business challenges based in Seattle, WA. The Sr. Applied Scientist will work closely with other research scientists, machine learning experts, and economists to design and run experiments, research new algorithms, and find new ways to improve Seller Pricing to optimize the Customer experience. The Applied Scientist will partner with technology and product leaders to solve business and technology problems using scientific approaches to build new services that surprise and delight our customers. An Applied Scientist at Amazon applies scientific principles to support significant invention, develops code and are deeply involved in bringing their algorithms to production. They also work on cross-disciplinary efforts with other scientists within Amazon. The key strategic objectives for this role include: - Understanding drivers, impacts, and key influences on Pricing dynamics. - Optimizing Seller Pricing to improve the Customer experience. - Drive actions at scale to provide low prices and increased selection for customers using scientifically-based methods and decision making. - Helping to support production systems that take inputs from multiple models and make decisions in real time. - Automating feedback loops for algorithms in production. - Utilizing Amazon systems and tools to effectively work with terabytes of data. You can also learn more about Amazon science here - https://www.amazon.science/ We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Economists to answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometrics models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities · Develop new econometric models or improve existing approaches using scalable techniques. · Extract data for analysis and model development from large, complex datasets. · Closely work with engineering teams to build scalable, efficient systems that implement prototypes in production. · Apply economic theory to solve business problems in a fast moving environment. · Distill problem definitions from informal business requirements and communicate technical solutions to senior business leaders. · Drive innovation and best practices in applied research across the Amazon research science community. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA