Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
-
Featured news
-
PAKDD 20232023In an e-commerce business, the ability to parse postal addresses into sub-component entities (such as building, locality) is essential to take automated actions at scale for successful delivery of shipments. The entities can be leveraged to build applications for logistics related operations, e.g. geocoding, assessing address completeness. Training an accurate address parser requires a significant number
-
ICLR 20232023Hyperparameter optimization (HPO) and neural architecture search (NAS) are methods of choice to obtain the best-in-class machine learning models, but in practice they can be costly to run. When models are trained on large datasets, tuning them with HPO or NAS rapidly becomes prohibitively expensive for practitioners, even when efficient multi-fidelity methods are employed. We propose an approach to tackle
-
AAAI 20232023We develop a meta-learning framework for simple regret minimization in bandits. In this framework, a learning agent interacts with a sequence of bandit tasks, which are sampled i.i.d. from an unknown prior distribution, and learns its meta-parameters to perform better on future tasks. We propose the first Bayesian and frequentist meta-learning algorithms for this setting. The Bayesian algorithm has access
-
AISTATS 20232023A contextual bandit is a popular framework for online learning to act under uncertainty. In practice, the number of actions is huge and their expected rewards are correlated. In this work, we introduce a general framework for capturing such correlations through a mixed-effect model where actions are related through multiple shared effect parameters. To explore efficiently using this structure, we propose
-
ICASSP 20232023Self-supervised representation learning approaches have grown in popularity due to the ability to train models on large amounts of unlabeled data and have demonstrated success in diverse fields such as natural language processing, computer vision, and speech. Previous self-supervised work in the speech domain has disentangled multiple attributes of speech such as linguistic content, speaker identity, and
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all