Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
-
Featured news
-
PPoPP 20232023Jointly utilizing multiple GPUs to train graph neural networks (GNNs) is crucial for handling large graphs and achieving high efficiency. However, we find that existing systems suffer from high communication costs and low GPU utilization due to improper data layout and training procedures. Thus, we propose a system dubbed Distributed Sampling and Pipelining (DSP) for multi-GPU GNN training. DSP adopts a
-
ISIR-eCom 20232023Commercial search engines use different semantic models to augment lexical matches. These models provide candidate items for a user’s query from a target space of millions to billions of items. Models with different inductive biases provide relatively different predictions, making it desirable to launch multiple semantic models in production. However, latency and resource constraints make simultaneously
-
AERA 2023 Workshop on Multimodal Literacy in OST Programs: Family and Community Ties2023Computer science (CS) is special among STEM subjects: it aims at an industry sector that has the most job growth but has a constant shortage in the workforce; it is a relatively young and burgeoning subject in K-12 education that has a shortage of classroom teachers; and it is one of a very few STEM subjects that large number of students can master by learning it completely out-of-school. To inspire the
-
ICASSP 20232023Automatic speech recognition (ASR) models with low-footprint are increasingly being deployed on edge devices for conversational agents, which enhances privacy. We study the problem of federated continual incremental learning for recurrent neural network-transducer (RNN-T) ASR models in the privacy-enhancing scheme of learning on-device, without access to ground truth human transcripts or machine transcriptions
-
ICASSP 20232023Negative feedback received from users of voice agents can provide valuable training signal to their underlying ML systems. However, such systems tend to have complex inference pipelines consisting of multiple model-based and deterministic components. Therefore, when negative feedback is received, it can be difficult to attribute the system error to a specific sub-component. In this work, we address this
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all