Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
ASRU 20232023Second pass rescoring is a critical component of competitive automatic speech recognition (ASR) systems. Large language models have demonstrated their ability in using pre-trained information for better rescoring of ASR hypothesis. Discriminative training, directly optimizing the minimum word-errorrate (MWER) criterion typically improves rescoring. In this study, we propose and explore several discriminative
-
NeurIPS 20232023This work proposes POMP, a prompt pre-training method for vision-language models. Being memory and computation efficient, POMP enables the learned prompt to condense semantic information for a rich set of visual concepts with over twenty-thousand classes. Once pre-trained, the prompt with a strong transferable ability can be directly plugged into a variety of visual recognition tasks including image classification
-
EMNLP 20232023Sequence-level knowledge distillation reduces the size of Seq2Seq models for more efficient abstractive summarization. However, it often leads to a loss of abstractiveness in summarization. In this paper, we propose a novel approach named DisCal to enhance the level of abstractiveness (measured by n-gram overlap) without sacrificing the informativeness (measured by ROUGE) of generated summaries. DisCal
-
ACM 2023 SIGSPATIAL Workshop on Analytics for Big Geospatial Data2023The compression of satellite imagery remains an important research area as hundreds of terabytes of images are collected every day, which drives up storage and bandwidth costs. Although progress has been made in increasing the resolution of these satellite images, many downstream tasks are only interested in small regions of any given image. These areas of interest vary by task but, once known, can be used
-
ASRU 20232023Spoken language understanding systems using audio-only data are gaining popularity, yet their ability to handle unseen intents remains limited. In this study, we propose a generalized zero-shot audio-to-intent classification framework with only a few sample text sentences per intent. To achieve this, we first train a supervised audio-to-intent classifier by making use of a self-supervised pre-trained model
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all