Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
NeurIPS 2023 Workshop on Efficient Natural Language and Speech Processing (ENLSP-III)2023While data selection methods have been studied extensively in active learning, data pruning, and data augmentation settings, there is little evidence for the efficacy of these methods in industry scale settings, particularly in low-resource languages. Our work presents ways of assessing prospective training examples in those settings for their "usefulness" or "difficulty". We also demonstrate how these
-
NeurIPS 2023 Workshop on I Can’t Believe It’s Not Better (ICBINB): Failure Modes in the Age of Foundation Models2023Compositionality is a common property in many modalities including text and images, but the compositional generalization of multi-modal models is not well-understood. In this paper, we identify two sources of visual-linguistic compositionality: linguistic priors and the interplay between images and texts. We show that current attempts to improve compositional generalization rely on linguistic priors rather
-
NeurIPS 20232023Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the
-
NeurIPS 20232023In this paper, we study the conditional stochastic optimization (CSO) problem which covers a variety of applications including portfolio selection, reinforcement learning, robust learning, causal inference, etc. The sample-averaged gradient of the CSO objective is biased due to its nested structure, and therefore requires a high sample complexity for convergence. We introduce a general stochastic extrapolation
-
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World2023Offline Reinforcement Learning (RL) has emerged as a promising approach to address real-world challenges where online interactions with the environment are limited, risky, or costly. Although, recent advancements produce high quality policies from offline data, currently, there is no systematic methodology to continue to improve them without resorting to online fine-tuning. This paper proposes to repurpose
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all