Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
2024Data augmentation is a key tool for improving the performance of deep networks, particularly when there is limited labeled data. In some fields, such as computer vision, augmentation methods have been extensively studied; however, for speech and audio data, there are relatively fewer methods developed. Using adversarial learning as a starting point, we develop a simple and effective augmentation strategy
-
EMNLP 20232024Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, STORYANALOGY, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on STORYANALOGY
-
2024Context cues carry information which can improve multiturn interactions in automatic speech recognition (ASR) systems. In this paper, we introduce a novel mechanism inspired by hyper-prompting to fuse textual context with acoustic representations in the attention mechanism. Results on a test set with multi-turn interactions show that our method achieves 5.9% relative word error rate reduction (rWERR) over
-
ECIR 20242024E-commerce customers frequently seek detailed product information for purchase decisions, commonly contacting sellers directly with extended queries. This manual response requirement imposes additional costs and disrupts buyer’s shopping experience with response time fluctuations ranging from hours to days. We seek to automate buyer inquiries to sellers in a leading e-commerce store using a domain-specific
-
Conference on Natural Language Processing (NATP) 20242024We present a supervised learning approach for automatic extraction of keyphrases from single documents. Our solution uses simple-to-compute statistical and positional features of candidate phrases and does not rely on any external knowledge base or on pre-trained language models or word embeddings. The ranking component of our proposed solution is a fairly lightweight ensemble model. Evaluation on benchmark
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all