Customer-obsessed science
Research areas
-
November 20, 20254 min readA new evaluation pipeline called FiSCo uncovers hidden biases and offers an assessment framework that evolves alongside language models.
-
-
-
September 2, 20253 min read
-
Featured news
-
2024Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM’s representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user
-
2024Sequence-to-sequence vision-language models are showing promise, but their applicability is limited by their inference latency due to their autoregressive way of generating predictions. We propose a parallel decoding sequence-to-sequence vision-language model, trained with a Query-CTC loss, that marginalizes over multiple inference paths in the decoder. This allows us to model the joint distribution of
-
Suggesting relevant questions to users is an important task in various applications, such as community Q&A or e-commerce websites. To ensure that there is no redundancy in the selected set of candidate questions, it is essential to filter out any near-duplicate questions. Identifying near-duplicate questions has another use case in light of the adoption of Large Language Models (LLMs) – fetching pre-computed
-
IEEE Robotics and Automation Letters 2024, IROS 20242024In this paper we propose an approach to trajectory planning based on the purpose of the task. For a redundant manipulator, many end effector poses in the task space can be achieved with multiple joint configurations. In planning the motion, we are free to choose the configuration that is optimal for the particular task requirement. Many previous motion-planning approaches have been proposed for the sole
-
In the field of Natural Language Processing (NLP), sentence pair classification is important in various real-world applications. Bi-encoders are commonly used to address these problems due to their low-latency requirements, and their ability to act as effective retrievers. However, bi-encoders often under-perform compared to cross-encoders by a significant margin. To address this gap, many Knowledge Distillation
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all