Search results

18,687 results found
  • June 25, 2019
    Many of today’s most useful AI systems are multilabel classifiers: they map input data into multiple categories at once. An object recognizer, for instance, might classify a given image as containing sky, sea, and boats but not desert or clouds.
  • Stanislav Peshterliev
    June 13, 2019
    Alexa’s ability to respond to customer requests is largely the result of machine learning models trained on annotated data. The models are fed sample texts such as “Play the Prince song 1999” or “Play River by Joni Mitchell”. In each text, labels are attached to particular words — SongName for “1999” and “River”, for instance, and ArtistName for Prince and Joni Mitchell. By analyzing annotated data, the system learns to classify unannotated data on its own.
  • Young-Bum Kim
    June 11, 2019
    As Alexa expands into new countries, she usually has to be trained on new languages. But sometimes, she has to be re-trained on languages she’s already learned. British English, American English, and Indian English, for instance, are different enough that for each of them, we trained a new machine learning model from scratch.
  • June 6, 2019
    New approach to reference resolution rewrites queries to clarify ambiguous references.
  • Alexa Science Team
    June 5, 2019
    Today, customer exchanges with Alexa are generally either one-shot requests, like “Alexa, what’s the weather?”, or interactions that require multiple requests to complete more complex tasks.
  • Prem Natarajan
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    With the launch of Alexa in 2014, Amazon sparked a renaissance in conversational AI. Combining far-field speech recognition with state-of-the-art natural language understanding, Alexa captured the imagination of millions of users worldwide. All of them had discovered that speech is, indeed, the most natural of user interfaces! In the summer of 2015, the Alexa Skills Kit (ASK) was launched with the goal
  • Emory University
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Inspired by studies on the overwhelming presence of experience-sharing in human- human conversations, Emora, the social chatbot developed by Emory University, aims to bring such experience-focused interaction to the current field of conver- sational AI. The traditional approach of information-sharing topic handlers is balanced with a focus on opinion-oriented exchanges that Emora delivers, and new conversational
  • Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Building conversational systems that enable natural language interactions with machines has been an attractive research area since the early days of computing, as exemplified by earlier text-based systems such as ELIZA [Weizenbaum, 1966]. The research and development work in this area has been increasing since then, with many publications on both task-oriented [Hosseini-Asl et al, 2020; Papangelis et al
  • Stanford University
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    We present Chirpy Cardinal, an open-domain dialogue agent, as a research plat- form for the 2019 Alexa Prize competition. Building an open-domain socialbot that talks to real people is challenging – such a system must meet multiple user expectations such as broad world knowledge, conversational style, and emotional connection. Our socialbot engages users on their terms – prioritizing their interests, feelings
  • Czech Technical University in Prague
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    The third version of the open-domain dialogue system Alquist developed within the Alexa Prize 2020 competition is designed to conduct coherent and engaging conversations on popular topics. The main novel contribution is the introduction of a system leveraging an innovative approach based on a conversational knowledge graph and adjacency pairs. The conversational knowledge graph allows the system to utilize
  • University of California, Davis
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Gunrock 2.0 is built on top of Gunrock with an emphasis on user adaptation. Gunrock 2.0 combines various neural natural language understanding modules, including named entity detection, linking, and dialog act prediction, to improve user understanding. Its dialog management is a hierarchical model that handles various topics, such as movies, music, and sports. The system-level dialog manager can handle
  • University of California, Santa Cruz
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    This report describes Athena, a dialogue system for spoken conversation on popular topics and current events. We develop a flexible topic-agnostic approach to dialogue management that dynamically configures dialogue based on general principles of entity and topic coherence. Athena’s dialogue manager uses a contract-based method where discourse constraints are dispatched to clusters of response generators
  • Carnegie Mellon University
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Tartan is a social bot that engages users in sharing daily personal experiences in multiple domains. Our work contributes to Conversational AI in two aspects: 1) We extract common-sense knowledge expressed in large-scale user utterances in conversations, and find that more than 20% of the shared information is related to personal life, such as social relationships and individual activities. 2) Based on
  • Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Building a dialogue system able to talk fluently and meaningfully in an open domain conversation is one of the foundational challenges in the field of AI. Recent progress in NLP driven by the application of the deep neural networks and large language models opened new possibilities to solve many hard problems of the conversational AI. Alexa Prize Socialbot Grand Challenge gives a unique opportunity to test
  • University of California, San Diego
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    We propose Bernard: a framework for an engaging open-domain socialbot. While the task of open-domain dialog generation remains a difficult one, we explore various strategies to generate coherent dialog given an arbitrary dialog history. We incorporate a stateful autonomous dialog manager using non-deterministic finite automata to control multi-turn conversations. We show that powerful pretrained language
  • University of California, Irvine
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    We describe the ZOTBOT system for open-ended conversations, designed for the Alexa Prize competition. We focus on two main shortcomings in existing conversational agents: lack of awareness in commonsense reasoning when responding to user utterances (resulting in nonsensical or uninteresting responses) and inability to understand semantics and converse naturally about fact-based articles in a compelling
  • Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Conversational Intelligence requires that a person engage on informational, personal and relational levels. Advances in Natural Language Understanding have helped recent chatbots succeed at dialog on the informational level. However, current techniques still lag for conversing with humans on a personal level and fully relating to them. The University of Michigan’s submission to the Alexa Prize Grand Challenge
  • Alessandro Moschitti, Giovanni Da San Martino, Alessandro Sperduti, Fabio Aiolli
    AAAI 2019
    2019
    Kernel methods are popular and effective techniques for learning on structured data, such as trees and graphs. One of their major drawbacks is the computational cost related to making a prediction on an example, which manifests in the classification phase for batch kernel methods, and especially in online learning algorithms. In this paper, we analyze how to speed up the prediction when the kernel function
  • Zihao Ye, Qipeng Guo, Quan Gan, Zheng Zhang
    ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds
    2019
    The building block of Transformer can be seen as inducing message passing over a complete graph whose nodes correspond to input tokens. Such dense connections make the Transformer data-hungry. Star-Transformer exploits short-term dependencies more heavily by keeping the connections between adjacent tokens but relaying long dependencies via a central node, thereby reducing the number of connections from
  • Ritwik Giri, Arvindh Krishnaswamy, Karim Helwani
    DCASE 2019
    2019
    In this paper we address the problem of detecting previously unseen novel audio events in the presence of real-life acoustic backgrounds. Specifically, during training, we learn subspaces corresponding to each acoustic background, and during testing the audio frame in question is decomposed into a component that lies on the mixture of subspaces and a super gaussian outlier component.Based on the energy
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense team with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! --- About the team We’re looking for a generalist software engineer to build and evolve our internal data platform. The team builds data-intensive services that ingest, process, store, and distribute multi-modal training data across multiple internal and external sources. This work emphasizes data integrity, reliability, and extensibility in support of large-scale training and experimentation workloads. The team also builds and maintains APIs and SDKs that enable product engineers and researchers to build on top of the platform. As research directions change, so does our data, and today the team is focused on hardening the platform to reliably deliver an evolving set of data schemas, sources, and modalities. By building strong foundations and durable abstractions, we aim to enable new kinds of tooling and workflows over time. The team will play a key role in shaping them as the research evolves. --- Key job responsibilities * Build and operate reliable, performant backend and data platform services that support continuous ingestion and use of multi-modal training data. * Identify and implement opportunities to accelerate data generation, validation, and usage across training and evaluation workflows from multiple internal and external sources. * Partner closely with Human Feedback, Data Generation, Product Engineering, and Research teams to evolve and scale the data platform, APIs, and SDKs. * Own projects end to end, from technical design and implementation through deployment, observability, and long-term maintainability. * Write clear technical documentation and communicate design decisions and tradeoffs to stakeholders across multiple teams. * Raise the team’s technical aptitude through thoughtful code reviews, knowledge sharing, and mentorship.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences