This picture shows the HVAC system on the rooftop of a skyscraper
Facility energy optimization provides an organization’s facilities team low-hanging-fruit opportunities for reducing costs and carbon. Data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities management.

Data-driven fault identification is key to more sustainable facilities management

How data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities of all sizes.

In a previous article on sustainable buildings, we talked about the approach of “sense, act, and scale” to drive efficiencies in buildings, and provided information using scientific publications. In this article, we will explore how data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities management by providing details on:

  • Key challenges for building management and operations;
  • Building system design fundamentals;
  • Key data points to investigate faults for facilities-level sustainability; and
  • Data-driven fault identification on AWS

Global temperatures are on the rise, greenhouse gas (GHG) emissions are the primary contributor, and facilities are among the top contributors to GHG. As stipulated in the Paris Agreement, facilities need to be 30% more energy efficient and net carbon neutral by 2050. Many companies have set new targets to reduce their emissions in recent years. For example, Amazon has set out the mission to be net neutral by 2040 and, in its recent sustainability report, has touched on how the company is using innovative design to build sustainability into physical Amazon campuses.

NeurIPS competition involves reinforcement learning, with the objective of minimizing both cost and CO2 emissions.

This article provides information on how companies of all sizes can operate and maintain their existing buildings more efficiently by identifying and fixing faults using data-driven mechanisms. In this vein, Amazon is sponsoring an AI challenge at NeurIPS this year that focuses on building energy management in a smart grid. Bottom line: energy optimization of facilities must be a key component of your organization’s plan to operate more sustainably.

Related content
As office buildings become smarter, it is easier to configure them with sustainability management in mind.

Facility energy optimization provides an organization’s facilities team low-hanging-fruit opportunities for reducing costs and carbon. However, building systems do inherit many complexities that must be addressed.

Some of the key facilities-management challenges are:

  • A building’s lifespan is 50+ years, and a facility’s system sensors are typically installed on day one. Many new cloud-native sensor options come to market every year, but building management systems (BMS) aren’t open, making it difficult to modernize data architectures for building infrastructure;
  • Across any large real estate portfolio there is a wide range of technology, standards, building types, and designs that are difficult to manage over their lifecycles; 
  • Building management and automation systems require a third party to own and modify production data, and licensing fees aren’t based on consumption pricing; and 
  • Facilities teams generally lack the cloud expertise required to design a bespoke management solution, and their IT teams often don’t have product-level experience to provide as an alternative for addressing building-management needs.

Facilities management and sustainability

Facilities management teams have limited options to modify most core BMS functions.

These systems are sometimes referred to as black boxes in that they don’t have the same level of do-it-yourself features that most cloud users have come to expect. There can be contractual challenges, as well, for building tenants who don’t have access to BMS information. This is by design, primarily due to a clear operational argument that safety and security control functions should be limited to key personnel. However, this lack of access to building-performance analytics, required for enterprise-level sustainability transformations, is increasingly considered a blocker by many of our sustainability customers.

Let’s begin our analysis by looking at a building’s biggest consumer of electricity and producer of emissions: the HVAC system.

HVAC units are central to a building and constitute roughly 50% of a building’s energy consumption. As a result, they are well instrumented and generally follow a rules-based approach. The downside: this approach can lead to many false alarms and building managers rely on manual inspection and occupants to communicate important faults that require attention. Building managers and engineers focus significant time and budget on HVAC systems, but nevertheless HVAC system faults still can account for 5% to 20% of energy waste.

The most common example of an HVAC unit with which we are all familiar is an air conditioner. In a BMS, HVAC is comprised of sub-components that provide heating or cooling, ventilation (air handling units, fans) and AC (rooftop units, variable refrigerants) and more.

HVAC Units 2_220830211027 (1).png

A building’s data model, and the larger building management schema, are established when the building first opens. Alerts, alarms, and performance data are issued through the BMS and a manager will notify a building services team to take action as needed. However, as the building and infrastructure ages many alarms become endemic and are difficult to remedy. Alarm fatigue is a term often used to describe the resulting BMS operator experience.

Variable air volume (VAV) units are another important asset that help to maintain temperatures by managing local air flow. VAV units help optimize the temperature by modifying air flow as opposed to conventional air volume (CAV) units which provide a constant volume of air that only affects air temperature.

There are often hundreds of VAV units in a larger building and managing them is burdensome. Building engineers have limited time to configure each of them as building demands change and VAV unit configurations are typically left unchanged after the commissioning of the building. The result: many unseen or mysterious building faults, and the hidden loss of energy over the years.

Related content
Confronting climate change requires the participation of governments, companies, academics, civil-society organizations, and the public.

Many modern buildings are designed to accommodate whatever the building planners know at the time of commissioning. As a result, HVAC system configuration isn’t a data-driven process because operational data doesn’t yet exist. The only real incentives for HVAC system optimization typically result from failures and occupant complaints. To meet future sustainability targets, buildings must be equipped with data-driven smart configurations that can be adjusted automatically.

To achieve this, we must understand the fundamentals of air flow as we need to combine the expertise of building engineers, IoT engineers, and data engineers to resolve some of the complex air-flow challenges. This also requires an understanding of how facilities are generally managed today, which we’ll examine next.

Anatomy of facilities management

The image below shows how an air-handling unit (AHU) uses fans to distribute air through ducting. These ducts are attached to AHUs (a type of VAV unit), controlling the flow of air to specific rooms.

typical air distribution topology.png
BMS software provides tools to help operators define logical “zones” that virtually represent a given physical space. This zone approach is useful in helping operators analyze the effectiveness of a given cooling design relative to the operational requirements.

To change the temperature of a given zone (often representing a physical room), a sensor will send a notification through a building gateway and controller. This device serves as an intermediary between the BMS server and a given HVAC unit.

There is some automation built into these HVAC systems in the form of thermostats. The automation comes in the form of a given cooling unit responding to a temperature reading, calculated by the thermostat. These setpoints provide a temperature range that, when followed, provide the best performance of the system.

Setpoint typically refers to the point at which a building system is set to activate or deactivate, eg a heating system might be set to switch on if the internal temperature falls below 20°C.

VAV Terminal_220906154354.png
A controller in the VAV unit is attached to the room thermostat. Thermostats tells VAV terminals if zone temperatures are too hot, cold, or just right. The VAV unit has several key components inside: controller, actuator, damper, shaft, and reheat coil.

AHU and VAV unit control points are managed by BMS software. This software is vendor managed and the configuration of the control system is determined at building inception. The configurations can be established based on several factors: room capacity and occupancy, room location, room cooling requirement, zone requirement, and more.

To illustrate a data model that reflects the operation of the HVAC system, let’s look at the VAVs that help distribute the air and the fault-driven alerts apparent in most aging systems. It is difficult to personalize these configurations as they are not data driven and do not update automatically. Let's use the flow of air through a given building as a use case and assume its operation will have a sizable impact on the building's overall energy usage.

Damper Side-by-side_v2_220919101743.png
On the left, the damper is fully open because it is a summer day, it is hot outside, and the room is full of people. But on the right, the damper is partially open because it is a winter day and there are no people in the room, requiring minimum heat load.

There will often be multiple zone-specific faults, such as temperature or flow failures, issues with dampers or fans, software configuration errors that can lead to short-cycling of the unit(s), and communication or controller problems, which make it difficult to even identify the problem remotely. These factors all result in a low-efficiency cooling system that increases emissions, wasting energy and money.

What faults can tell you about sustainable building performance

Faults can be neglected for long periods of time, leaking invisible energy in the process.

Researchers from UC San Diego conducted a detailed data analysis (Bharathan was a co-author) of a 145,000-square-foot building. They identified 88 faults after building engineers fixed all the issues they could find. The paper estimates that fixing these faults could save 410.3 megawatt hours per year and, at a typical electrical cost of 12 cents per kilowatt hour, achieve a $492,360 savings in the first year.

According to the U.S. Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator, that’s the equivalent of 38,244 passenger car trips abated. Cisco offers another example. The company achieved a 28% reduction in electrical usage in their buildings worldwide by using an IP-Enabled Energy Management solution.

Traditional fault fixing focuses on the centralized HVAC subsystems such as AHU. Here we focus on the VAV units that are often ignored. Some of the key issues in VAV units are: air supply flow, temperature setpoints, thermostat adjustments, inappropriate cooling or stuck dampers.

Related content
Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

To identify these faults, you can perform data analysis with key data attributes including temperature, heating, and cooling setpoints; upper- and lower- limit changes based on day of week; re-heat coil (on or off); occupancy sensor and settings (occupied, standby or unoccupied); damper sensor and damper settings; and pressure flow.

Using these parameters, we can define informative models. For example, you can create setpoints informed by seasonal weather data, in addition to room thermostats. You also can perform temperature data analysis against known occupancy times.

Data analysis isn’t easy at first; it’s generally not in a state where it can be readily loaded into a graph store. Oftentimes there is a lot of data transformation and IoT work required to get the data to a place where it can be analyzed by data scientists. To solve this challenge, you will need data experts, FM domain experts, cloud engineers, and someone who can bring them together to drive the right focus.

To begin, the best approach is setting up a meeting between your facilities and IT teams to start examining your building data. Some teams may grant you read-only access to the system. Otherwise, from a .CSV download of the last two to three years of building data, you can perform your analysis.

For data- driven fault identification within your facilities data, you can get started by using the Model, Cluster, and Compare (MCC approach). The primary objective of MCC is to determine clusters of zones within a building, and then use these clusters to automatically determine misconfigured, anomalous, or faulty zone controller configuration.

MCC approach to data-driven analysis

We will use a university-building example to explain the benefits of the MCC approach. The university building comprised personal offices, shared offices, kitchens, and restrooms.

In a typical room, the HVAC provides cold air during the summer. The supplied air flow is modulated to maintain the required temperature during day time, and falls back to a minimum during the night.

In the graph below, we show a room where the opposite happens because of a misconfiguration fault.

Supply Flow Graphic 1_220831110607.png
The VAV unit cools the room at night, but uses a minimal air flow during the day. The cooling temperature setpoint is 80°F from midnight until 10 a.m., and then drops to 75°F as expected. However, there is a continuous cold air supply flow of 800 cubic feet per minute (CFM) throughout the night until 11:30 a.m.

The building management contractor surmised these errors were caused due to a misunderstanding at the time of initial building commissioning. This fault was hidden within the system for years, and was identified while doing an MCC analysis.

Model

When we try to identify faults with raw sensor data, it often leads to misleading results. For example, a simple fault detection rule may generate an alarm if the temperature of a room goes beyond a threshold. The alarm may be false for any number of reasons: it could be a particularly hot day, or an event is occurring in the room. We need to look for faults that are consistent, and require human attention. Given the large number of alarms that are triggered with simple rules, such faults get overlooked.

Our MCC algorithm looks for rooms that behave differently from others over a long time-span. To compare different rooms, we create a model that captures the generic patterns of usage over months or years. Then we can compare and cluster rooms to weed out the faults.

In our algorithm, we use the measured room temperature and air flow from the HVAC to create a room energy model. The energy spent by the HVAC system on a room is proportional to the product of its temperature and airflow supplied as per the laws of thermodynamics. We use the product of two sensor measurements as the parameter to model the room because it indicates the generic patterns of use. If we find rooms whose energy patterns are substantially different, we can inspect them further.

Cluster

Room temperatures can fluctuate for natural reasons, and our fault-detection algorithm should not flag them.

The MCC algorithm clusters rooms that are similar to each other with the KMeans algorithm. The clusters naturally align rooms that are similar, for example, west-facing rooms, east-facing rooms, kitchenettes, and conference rooms. We can create these clusters manually, based on domain knowledge and usage type, or the clustering algorithm can automate this process.

Compare

Having defined configurations per cluster, the MCC algorithm then compares rooms to identify anomalies. This step ensures that natural fluctuations are ignored, and only the egregious rooms are highlighted, reducing the number of false alarms.

Intelligent rules

The MCC study created rules to detect new faults after analyzing the anomalies manually. Rules are a natural way to integrate with an existing system, and to catch similar faults that occur in the future. Rules are also interpretable by domain experts, enabling further tuning.

An interesting example of an identified fault is shown below:

Supply Flow Graphic 2_220831110647.png
The HVAC system strives to maintain the room temperature between the cooling setpoint (78F in this room) and the heating setpoint (74F). If the temperature goes beyond these setpoints, it will cool/heat the room as required. The room is excessively cooled with high air flow (800 CFM), causing the room temperature to fall below the heating setpoint, which then triggers heating. As a result of this fault, the room uses excessive energy to maintain comfort.

There were five rooms with similar issues on the same floor and 15 overall within the building. The cause of the fault: the designed air flow specifications were based on maximum occupancy. Issues such as these cause enormous energy waste, and they often go unnoticed for years.

A path forward 

In this post we’ve provided some foundational concepts to consider in how you can better use data to improve both facility performance and availability.

Whether your goal is to improve building performance in support of sustainability transformation or to improve fault detection, the path starts with modernizing the data models that support your facilities. Following a data modernization path will illustrate where the building architecture that provides the data is not meeting expectations.

As a next step, facilities and IT managers can get started by:

  • Performing a basic audit of their buildings and look for options to gather key parameter data outlined above. 
  • Consolidating data from the relevant sources, applying data standardization, and making use of the fault-detection approach outlined above. 
  • Making use of AWS Data Analytics and AWS AI/ML services to perform data analysis and apply machine learning algorithms to identify data anomalies. Amazon uses these services to manage the thousands of world-class facilities that serve our employees, customers, and communities. Learn more about our sustainable building initiatives

These steps will help identify energy hot spots and hidden faults in your facilities; facilities managers can then make use of this information to fix the relevant faults and drive facility sustainability. Finally, consider making sustainability data easily accessible to executive teams to help drive discussions and decisions on impactful carbon-abatement initiatives.

Research areas

Related content

IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
US, WA, Seattle
We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning modeling and architecture expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities * See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques * Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale * Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems * Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. * Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. We drive cross-domain and cross-system improvements through: * invent and deliver price optimization, simulation, and competitiveness tools for Amazon merchants. * shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. * Error detection and price quality guardrails at scale. * Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into Stores architectures, and is highly relevant to the customer; this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication.
IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Key job responsibilities - Work backwards from customer problems to research and develop novel machine learning solutions for music and podcast recommendations. Through A/B testing and online experiments done hand-in-hand with engineering teams, you'll implement and validate your ideas and solutions. - Advocate solutions and communicate results, insights and recommendations to stakeholders and partners. - Produce innovative research on recommender systems that shapes the field and meets the high standards of peer-reviewed publications. You'll cement your team's reputation as thought leaders pioneering new recommenders. Stay current with advancements in the field, adapting latest in literature to build efficient and scalable models A day in the life Lead innovation in AI/ML to shape Amazon Music experiences for millions. Develop state of the art models leveraging and advancing the latest developments in machine learning and genAI. Collaborate with talented engineers and scientists to guide research and build scalable models across our audio portfolio - music, podcasts, live streaming, and more. Drive experiments and rapid prototyping, leveraging Amazon's data at scale. Innovate daily alongside world-class teams to delight customers worldwide through personalization. About the team The team is responsible for models that underly Amazon Music’s recommendations content types (music, podcasts, audiobooks), sequencing models for algorithmic stations across mobile, web and Alexa, ranking models for the carousels and Page strategy on Amazon Music surfaces, and Query Understanding for conversational flow and recommendations. You will collaborate with a team of product managers, applied scientists and software engineers delivering meaningful recommendations, personalized for each of the millions of customers using Amazon Music globally. As a scientist on the team, you will be involved in every aspect of the development lifecycle, from idea generation and scientific research to development and deployment of advanced models. You will work closely with engineering to realize your scientific vision.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
SE, Stockholm
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Do you want to define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. The Prime Video Sye Protocol team is looking for an Applied Scientist. This person will deliver features that automatically detect and prevent video quality issues before they reach millions of customers worldwide. You will lead the design of models that scale to very large quantities of video data across multiple dimensions. You will embody scientific rigor, designing and executing experiments to demonstrate the technical effectiveness and business value of your methods. You will work alongside engineering teams to deliver your research into production systems that ensure premium streaming experiences for customers globally. You will have demonstrated technical, teamwork and communication skills, and a motivation to deliver customer value from your research. Our team offers exceptional opportunities for you to grow your technical and non-technical skills and make a global impact. Key job responsibilities - Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement to solve complex video defect detection challenges. - Collaborate with software engineers to integrate successful experimental results into Prime Video wide processes and production systems that operate at scale with minimal computational overhead. - Communicate results and insights to both technical and non-technical audiences, including presentations and written reports to stakeholders across engineering, operations, and content teams. A day in the life Your typical day starts investigating overnight video quality alerts and developing breakthrough detection algorithms. You'll collaborate with engineering teams on production deployment, analyze video data to uncover quality patterns, and work with transformers and video language models. About the team You'll join a team focused on delivering premium video experiences through scientific innovation. We build machine learning systems that automatically detect video quality issues across our global streaming platform, collaborating closely with engineering, operations, and content teams to solve video analysis challenges while ensuring customers never experience poor quality. Our team partners with leading universities to develop solutions and advance computer vision and machine learning techniques. We value scientific rigor whilst staying customer-focused, encouraging both innovative and practical solutions that scale globally. There are opportunities for high-impact publications and patent development that advance the entire field.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.