This picture shows the HVAC system on the rooftop of a skyscraper
Facility energy optimization provides an organization’s facilities team low-hanging-fruit opportunities for reducing costs and carbon. Data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities management.

Data-driven fault identification is key to more sustainable facilities management

How data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities of all sizes.

In a previous article on sustainable buildings, we talked about the approach of “sense, act, and scale” to drive efficiencies in buildings, and provided information using scientific publications. In this article, we will explore how data-driven analysis can help to identify fault detection and drive energy efficiencies for facilities management by providing details on:

  • Key challenges for building management and operations;
  • Building system design fundamentals;
  • Key data points to investigate faults for facilities-level sustainability; and
  • Data-driven fault identification on AWS

Global temperatures are on the rise, greenhouse gas (GHG) emissions are the primary contributor, and facilities are among the top contributors to GHG. As stipulated in the Paris Agreement, facilities need to be 30% more energy efficient and net carbon neutral by 2050. Many companies have set new targets to reduce their emissions in recent years. For example, Amazon has set out the mission to be net neutral by 2040 and, in its recent sustainability report, has touched on how the company is using innovative design to build sustainability into physical Amazon campuses.

NeurIPS competition involves reinforcement learning, with the objective of minimizing both cost and CO2 emissions.

This article provides information on how companies of all sizes can operate and maintain their existing buildings more efficiently by identifying and fixing faults using data-driven mechanisms. In this vein, Amazon is sponsoring an AI challenge at NeurIPS this year that focuses on building energy management in a smart grid. Bottom line: energy optimization of facilities must be a key component of your organization’s plan to operate more sustainably.

Related content
As office buildings become smarter, it is easier to configure them with sustainability management in mind.

Facility energy optimization provides an organization’s facilities team low-hanging-fruit opportunities for reducing costs and carbon. However, building systems do inherit many complexities that must be addressed.

Some of the key facilities-management challenges are:

  • A building’s lifespan is 50+ years, and a facility’s system sensors are typically installed on day one. Many new cloud-native sensor options come to market every year, but building management systems (BMS) aren’t open, making it difficult to modernize data architectures for building infrastructure;
  • Across any large real estate portfolio there is a wide range of technology, standards, building types, and designs that are difficult to manage over their lifecycles; 
  • Building management and automation systems require a third party to own and modify production data, and licensing fees aren’t based on consumption pricing; and 
  • Facilities teams generally lack the cloud expertise required to design a bespoke management solution, and their IT teams often don’t have product-level experience to provide as an alternative for addressing building-management needs.

Facilities management and sustainability

Facilities management teams have limited options to modify most core BMS functions.

These systems are sometimes referred to as black boxes in that they don’t have the same level of do-it-yourself features that most cloud users have come to expect. There can be contractual challenges, as well, for building tenants who don’t have access to BMS information. This is by design, primarily due to a clear operational argument that safety and security control functions should be limited to key personnel. However, this lack of access to building-performance analytics, required for enterprise-level sustainability transformations, is increasingly considered a blocker by many of our sustainability customers.

Let’s begin our analysis by looking at a building’s biggest consumer of electricity and producer of emissions: the HVAC system.

HVAC units are central to a building and constitute roughly 50% of a building’s energy consumption. As a result, they are well instrumented and generally follow a rules-based approach. The downside: this approach can lead to many false alarms and building managers rely on manual inspection and occupants to communicate important faults that require attention. Building managers and engineers focus significant time and budget on HVAC systems, but nevertheless HVAC system faults still can account for 5% to 20% of energy waste.

The most common example of an HVAC unit with which we are all familiar is an air conditioner. In a BMS, HVAC is comprised of sub-components that provide heating or cooling, ventilation (air handling units, fans) and AC (rooftop units, variable refrigerants) and more.

HVAC Units 2_220830211027 (1).png

A building’s data model, and the larger building management schema, are established when the building first opens. Alerts, alarms, and performance data are issued through the BMS and a manager will notify a building services team to take action as needed. However, as the building and infrastructure ages many alarms become endemic and are difficult to remedy. Alarm fatigue is a term often used to describe the resulting BMS operator experience.

Variable air volume (VAV) units are another important asset that help to maintain temperatures by managing local air flow. VAV units help optimize the temperature by modifying air flow as opposed to conventional air volume (CAV) units which provide a constant volume of air that only affects air temperature.

There are often hundreds of VAV units in a larger building and managing them is burdensome. Building engineers have limited time to configure each of them as building demands change and VAV unit configurations are typically left unchanged after the commissioning of the building. The result: many unseen or mysterious building faults, and the hidden loss of energy over the years.

Related content
Confronting climate change requires the participation of governments, companies, academics, civil-society organizations, and the public.

Many modern buildings are designed to accommodate whatever the building planners know at the time of commissioning. As a result, HVAC system configuration isn’t a data-driven process because operational data doesn’t yet exist. The only real incentives for HVAC system optimization typically result from failures and occupant complaints. To meet future sustainability targets, buildings must be equipped with data-driven smart configurations that can be adjusted automatically.

To achieve this, we must understand the fundamentals of air flow as we need to combine the expertise of building engineers, IoT engineers, and data engineers to resolve some of the complex air-flow challenges. This also requires an understanding of how facilities are generally managed today, which we’ll examine next.

Anatomy of facilities management

The image below shows how an air-handling unit (AHU) uses fans to distribute air through ducting. These ducts are attached to AHUs (a type of VAV unit), controlling the flow of air to specific rooms.

typical air distribution topology.png
BMS software provides tools to help operators define logical “zones” that virtually represent a given physical space. This zone approach is useful in helping operators analyze the effectiveness of a given cooling design relative to the operational requirements.

To change the temperature of a given zone (often representing a physical room), a sensor will send a notification through a building gateway and controller. This device serves as an intermediary between the BMS server and a given HVAC unit.

There is some automation built into these HVAC systems in the form of thermostats. The automation comes in the form of a given cooling unit responding to a temperature reading, calculated by the thermostat. These setpoints provide a temperature range that, when followed, provide the best performance of the system.

Setpoint typically refers to the point at which a building system is set to activate or deactivate, eg a heating system might be set to switch on if the internal temperature falls below 20°C.

VAV Terminal_220906154354.png
A controller in the VAV unit is attached to the room thermostat. Thermostats tells VAV terminals if zone temperatures are too hot, cold, or just right. The VAV unit has several key components inside: controller, actuator, damper, shaft, and reheat coil.

AHU and VAV unit control points are managed by BMS software. This software is vendor managed and the configuration of the control system is determined at building inception. The configurations can be established based on several factors: room capacity and occupancy, room location, room cooling requirement, zone requirement, and more.

To illustrate a data model that reflects the operation of the HVAC system, let’s look at the VAVs that help distribute the air and the fault-driven alerts apparent in most aging systems. It is difficult to personalize these configurations as they are not data driven and do not update automatically. Let's use the flow of air through a given building as a use case and assume its operation will have a sizable impact on the building's overall energy usage.

Damper Side-by-side_v2_220919101743.png
On the left, the damper is fully open because it is a summer day, it is hot outside, and the room is full of people. But on the right, the damper is partially open because it is a winter day and there are no people in the room, requiring minimum heat load.

There will often be multiple zone-specific faults, such as temperature or flow failures, issues with dampers or fans, software configuration errors that can lead to short-cycling of the unit(s), and communication or controller problems, which make it difficult to even identify the problem remotely. These factors all result in a low-efficiency cooling system that increases emissions, wasting energy and money.

What faults can tell you about sustainable building performance

Faults can be neglected for long periods of time, leaking invisible energy in the process.

Researchers from UC San Diego conducted a detailed data analysis (Bharathan was a co-author) of a 145,000-square-foot building. They identified 88 faults after building engineers fixed all the issues they could find. The paper estimates that fixing these faults could save 410.3 megawatt hours per year and, at a typical electrical cost of 12 cents per kilowatt hour, achieve a $492,360 savings in the first year.

According to the U.S. Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator, that’s the equivalent of 38,244 passenger car trips abated. Cisco offers another example. The company achieved a 28% reduction in electrical usage in their buildings worldwide by using an IP-Enabled Energy Management solution.

Traditional fault fixing focuses on the centralized HVAC subsystems such as AHU. Here we focus on the VAV units that are often ignored. Some of the key issues in VAV units are: air supply flow, temperature setpoints, thermostat adjustments, inappropriate cooling or stuck dampers.

Related content
Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

To identify these faults, you can perform data analysis with key data attributes including temperature, heating, and cooling setpoints; upper- and lower- limit changes based on day of week; re-heat coil (on or off); occupancy sensor and settings (occupied, standby or unoccupied); damper sensor and damper settings; and pressure flow.

Using these parameters, we can define informative models. For example, you can create setpoints informed by seasonal weather data, in addition to room thermostats. You also can perform temperature data analysis against known occupancy times.

Data analysis isn’t easy at first; it’s generally not in a state where it can be readily loaded into a graph store. Oftentimes there is a lot of data transformation and IoT work required to get the data to a place where it can be analyzed by data scientists. To solve this challenge, you will need data experts, FM domain experts, cloud engineers, and someone who can bring them together to drive the right focus.

To begin, the best approach is setting up a meeting between your facilities and IT teams to start examining your building data. Some teams may grant you read-only access to the system. Otherwise, from a .CSV download of the last two to three years of building data, you can perform your analysis.

For data- driven fault identification within your facilities data, you can get started by using the Model, Cluster, and Compare (MCC approach). The primary objective of MCC is to determine clusters of zones within a building, and then use these clusters to automatically determine misconfigured, anomalous, or faulty zone controller configuration.

MCC approach to data-driven analysis

We will use a university-building example to explain the benefits of the MCC approach. The university building comprised personal offices, shared offices, kitchens, and restrooms.

In a typical room, the HVAC provides cold air during the summer. The supplied air flow is modulated to maintain the required temperature during day time, and falls back to a minimum during the night.

In the graph below, we show a room where the opposite happens because of a misconfiguration fault.

Supply Flow Graphic 1_220831110607.png
The VAV unit cools the room at night, but uses a minimal air flow during the day. The cooling temperature setpoint is 80°F from midnight until 10 a.m., and then drops to 75°F as expected. However, there is a continuous cold air supply flow of 800 cubic feet per minute (CFM) throughout the night until 11:30 a.m.

The building management contractor surmised these errors were caused due to a misunderstanding at the time of initial building commissioning. This fault was hidden within the system for years, and was identified while doing an MCC analysis.

Model

When we try to identify faults with raw sensor data, it often leads to misleading results. For example, a simple fault detection rule may generate an alarm if the temperature of a room goes beyond a threshold. The alarm may be false for any number of reasons: it could be a particularly hot day, or an event is occurring in the room. We need to look for faults that are consistent, and require human attention. Given the large number of alarms that are triggered with simple rules, such faults get overlooked.

Our MCC algorithm looks for rooms that behave differently from others over a long time-span. To compare different rooms, we create a model that captures the generic patterns of usage over months or years. Then we can compare and cluster rooms to weed out the faults.

In our algorithm, we use the measured room temperature and air flow from the HVAC to create a room energy model. The energy spent by the HVAC system on a room is proportional to the product of its temperature and airflow supplied as per the laws of thermodynamics. We use the product of two sensor measurements as the parameter to model the room because it indicates the generic patterns of use. If we find rooms whose energy patterns are substantially different, we can inspect them further.

Cluster

Room temperatures can fluctuate for natural reasons, and our fault-detection algorithm should not flag them.

The MCC algorithm clusters rooms that are similar to each other with the KMeans algorithm. The clusters naturally align rooms that are similar, for example, west-facing rooms, east-facing rooms, kitchenettes, and conference rooms. We can create these clusters manually, based on domain knowledge and usage type, or the clustering algorithm can automate this process.

Compare

Having defined configurations per cluster, the MCC algorithm then compares rooms to identify anomalies. This step ensures that natural fluctuations are ignored, and only the egregious rooms are highlighted, reducing the number of false alarms.

Intelligent rules

The MCC study created rules to detect new faults after analyzing the anomalies manually. Rules are a natural way to integrate with an existing system, and to catch similar faults that occur in the future. Rules are also interpretable by domain experts, enabling further tuning.

An interesting example of an identified fault is shown below:

Supply Flow Graphic 2_220831110647.png
The HVAC system strives to maintain the room temperature between the cooling setpoint (78F in this room) and the heating setpoint (74F). If the temperature goes beyond these setpoints, it will cool/heat the room as required. The room is excessively cooled with high air flow (800 CFM), causing the room temperature to fall below the heating setpoint, which then triggers heating. As a result of this fault, the room uses excessive energy to maintain comfort.

There were five rooms with similar issues on the same floor and 15 overall within the building. The cause of the fault: the designed air flow specifications were based on maximum occupancy. Issues such as these cause enormous energy waste, and they often go unnoticed for years.

A path forward 

In this post we’ve provided some foundational concepts to consider in how you can better use data to improve both facility performance and availability.

Whether your goal is to improve building performance in support of sustainability transformation or to improve fault detection, the path starts with modernizing the data models that support your facilities. Following a data modernization path will illustrate where the building architecture that provides the data is not meeting expectations.

As a next step, facilities and IT managers can get started by:

  • Performing a basic audit of their buildings and look for options to gather key parameter data outlined above. 
  • Consolidating data from the relevant sources, applying data standardization, and making use of the fault-detection approach outlined above. 
  • Making use of AWS Data Analytics and AWS AI/ML services to perform data analysis and apply machine learning algorithms to identify data anomalies. Amazon uses these services to manage the thousands of world-class facilities that serve our employees, customers, and communities. Learn more about our sustainable building initiatives

These steps will help identify energy hot spots and hidden faults in your facilities; facilities managers can then make use of this information to fix the relevant faults and drive facility sustainability. Finally, consider making sustainability data easily accessible to executive teams to help drive discussions and decisions on impactful carbon-abatement initiatives.

Research areas

Related content

TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.