An animation shows a stack of boxes slowly reducing in number to arrive at an optimal suite of boxes for packing items as part of Amazon's PackOpt system
By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite, thanks to implementation of the pioneering web-based PackOpt tool.

How Amazon learned to cut its cardboard waste

Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

In a world of ideal sustainability, every customer order received by Amazon that required a box would ship in a box tailored precisely to the size of its contents to minimize cardboard (corrugate) waste for the customer and maximize the efficiency of order fulfillment.

But with an ever-changing catalogue of hundreds of millions of items and multiple items often shipped in a shared box, this dream scenario would require a near-infinite range of box sizes standing ready at Amazon’s fulfillment centers (FCs).

While Amazon works toward producing right-sized boxes for each shipment, the current solution to minimizing waste is to furnish every fulfillment center with a limited suite of cardboard box options. These suites vary depending on the type of items being fulfilled. For example, some FCs are focused on shipping single or multiple items that have been sorted automatically by robots and packed by Amazon associates.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

In North America, single items shipped from sortable FCs that require a box, with some exceptions, are typically shipped within one of a finite number of box sizes. Multiple items being shipped together are packed into a box drawn from a different suite of boxes that are designed for a larger and heavier payload.

Another type of FC, known as non-sortable, deals with larger items that require oversized boxes — patio furniture, for example — and these FCs need yet another suite of boxes.

The question that Amazon has addressed with increasing success over the past few years is this: Given the items typically shipped in a particular Amazon region, marketplace, or FC, what is the optimal box suite?

That answer has now been embodied in a pioneering web-based tool called PackOpt that is being embraced by Amazon managers all over the world.

By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite. In North America, applying PackOpt technology has resulted in an annual reduction in cardboard waste of 7% to 10%, saving roughly 60,000 tons of cardboard annually. In emerging countries such as Singapore, PackOpt has delivered more than double that percentage efficiency.

Matrix revolutions

David Gasperino, an Amazon principal research scientist, led the technical development of PackOpt, which is helping Amazon’s stakeholders to not only minimize the amount of “air” shipped to customers, but also helping Amazon deliver on its Climate Pledge commitment to reaching net-zero carbon emissions across its business by 2040.

Arriving at the perfect suite of boxes is incredibly difficult, says Gasperino, partly because the number of possibilities is enormous.

This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them.
Renan Garcia

To imagine the challenge in the simplest terms, first picture a matrix 100+ million rows deep — these represent shipments over a time period within a given region. Each of the 20,000 or so columns on the matrix, meanwhile, represents a candidate box of various dimensions that might become part of a suite of boxes.

“To create an optimal set of boxes, you need to select a small subset of columns to pack all of the shipments, and those columns must lead to the smallest overall box volume when you sum it all up,” explains Gasperino.

It is a hard challenge — literally.

“This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them,” says Renan Garcia, a principal research scientist who helped to design PackOpt’s optimization framework (NP Hard is the same class of problem as the infamous “traveling salesman problem”).

The sheer size of the matrix is a challenge, says Garcia. “The matrix that you need to build is so big, you can't even store it in memory.”

Related content
Amazon joins the US DOE’s Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE™) Consortium, focusing on materials and recycling innovation.

The team addressed this computational tractability issue in several ways. First, to simplify the problem their approach narrows the range of candidate-box dimensions to 2-inch increments in any direction before the first phase of iterative improvements, reducing the initial set of candidate boxes into the hundreds.

After the optimizer discovers the best candidates in this “coarse” set of boxes, it will take those best prospects as a starting point and search again, this time using 1-inch dimensional increments, and so on toward finer dimensions.

“Theoretically, the algorithm will converge on a high-quality box suite no matter where you start,” says Garcia.

The team also employed process parallelization across multiple computational cores to break the problem into smaller chunks.

“Multiple cores can be doing this in parallel, exploring alternate solutions. And every so often they communicate their best solution back to each other,” says Garcia. The result: PackOpt can solve in minutes what previously took weeks of computation time.

3D Tetris

PackOpt for box suites shipping single items launched in 2018. A year later, an enhanced version was capable of identifying the best box suite for shipments containing multiple items in the same box.

For this iteration, the team added a high-performance algorithm that very rapidly determines how the different items to be delivered together can be configured to fit inside a candidate box — think 3D Tetris. PackOpt also knows, for example, that foldable or compressible items such as clothing can easily be slotted in around other, more solid items.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

In theory, this meant packing more items into better-fitting boxes. But did it work in practice?

“One of our colleagues, Neb Getaneh, designed and conducted studies in the Amazon Packaging Lab to quantify the impact of packaging boxes with less air due to size and fitting algorithm optimization,” says Gasperino. “And we did not see any degradation in packing performance.”

But creating a clever algorithm doesn’t automatically translate into real-world impact.

“There are many different steps that must happen between solving this optimization problem and actually delivering optimized packaging to our customers’ doorsteps,” says Gasperino. “We needed the regional packaging leads all over the world, who aren’t scientists, to quickly understand how to use PackOpt and to see the economic value in it for themselves, and eventually become the champions for packaging optimization.”

Democratizing the tool

Ease of use would be critical in the push to democratize the tool.

“PackOpt’s algorithms have about 25 different parameters and they're all scientific in nature,” Garcia says. “We didn’t want the user to worry about that kind of thing, so we abstracted these parameters away, behind the scenes.”

Gasperino and team also partnered with AWS ProServe consultants to design and build a streamlined web app to democratize use of PackOpt. The resulting user interface is simple, essentially requiring two inputs: historical shipment data of the region aiming to optimize their boxes, and the dimensions of the boxes in their current suite.

“PackOpt will then simulate how well your products fit in your current boxes, giving you a total cardboard weight, box utilization rate, and packaging volume — among many other metrics — and compare those metrics with an optimized box suite,” says Chris Collins, a support engineer who helped develop the PackOpt web tool.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

If a significant improvement is revealed, there is an immediate business and sustainability case for optimizing that suite with boxes of more appropriate dimensions. PackOpt can also identify if increasing the number of box options in a given suite will boost efficiency significantly as well as automatically track savings after teams have deployed their suite.

“The savings tracking function was developed to help stakeholders quantify the impacts of their optimized box suites in a scalable manner,” Collins explains. “This function could also be used to help the stakeholder keep their finger on the pulse of the optimized packaging suite, knowing that if the savings metrics begin to fall off it could signal to the team the need to re-optimize the current package selections.”

Another of the key metrics PackOpt reveals is air per shipment.

“It’s understandably a hot topic with Amazon customers who receive an order with too much air in the box compared with the item itself,” says Collins. “PackOpt helps improve our customer experience by really driving down such shipments.”

The word gets out

PackOpt has been embraced in fulfillment centers around the world. After proving the tool’s operational effectiveness in North America, Amazon Japan was first to show a keen interest and develop its own box suite.

“The products going through our Japan FCs are different to those going through North America’s, so there's no reason the box suites should be the same across those two regions,” notes Gasperino.

“Using PackOpt has simplified my team’s work significantly,” says Myles Lefkovitz, a customer packaging experience manager in Tokyo. “We’ve been able to accomplish things that simply wouldn’t have been possible without it and driven down our packaging costs.”

Use of the tool quickly spread around the world at the regional level. But such is the power and flexibility of PackOpt, it is increasingly being used at a more granular level by Amazon stakeholders, says Collins.

See Amazon's Bengalaru research office
Research in Bengaluru spans numerous disciplines, including fraud detection, information retrieval, advertising, automatic speech recognition, and operations.

“In India, for example, customers’ purchasing behavior, and the items purchased, vary vastly across the country, so managers at Amazon India have used PackOpt to tailor bespoke box suites for each fulfillment center.”

“Packaging optimization is a crucial part of Amazon’s commitment to The Climate Pledge and reducing waste on behalf of customers,” says Alex Hartford, business lead for packaging optimization. “In a company the scale of Amazon, even seemingly small optimizations in material reduction make a big impact not only in terms of carbon impact, but also on Amazon’s ability to lower our cost structures and spin the Amazon flywheel.”

In addition to different Amazon regions selling different products, as much as a third of a given region’s Amazon catalogue might change from one year to the next, meaning the product profile is forever changing. Moreover, new packaging types — such as recycled padded mailers or poly bags — also affect the optimal box suite. As a result, PackOpt’s monitoring mission is ongoing.

Amazon itself is a nested packing problem, right? You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … we need to optimize the dimensions of all of these.
Renan Garcia

Its creators envision how the technology could usefully spill over to the wider Amazon.

“Amazon itself is a nested packing problem, right?” says Garcia. “You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … We have storage facilities of all shapes and sizes, and we need to optimize the dimensions of all of these.”

In fact, Renan has begun applying the underlying PackOpt concepts to related applications throughout Amazon. For example, he has partnered with colleagues from Last Mile Transportation to redesign Amazon Robotics pods for outbound packages in sortation centers.

The team developed a local search framework to solve this more challenging nested packing variant (products in packages, packages in bins, and bins in pods) which generates designs requiring 33% fewer pods and leads to more efficient use of precious facility space.

“This sort of optimization opportunity exists throughout our supply chain,” says Hartford. “It is critical that we look at other parts of our network to see where we can apply both the fitting algorithms that we've developed and the optimization tools.”

Related content

US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a Data Scientist in our team, you will collaborate directly with developers and scientists to produce modeling solutions, you will partner with software developers and data engineers to build end-to-end data pipelines and production code, and you will have exposure to senior leadership as we communicate results and provide scientific guidance to the business. You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (like ROAS, Share of Wallet) that will enable us to continually delight our customers worldwide. As a successful data scientist, you are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, can multi-task, and can credibly interface between technical teams and business stakeholders. Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limit. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, NY, New York
This is an exciting opportunity to shape the future of AI and make a real impact on our customers' generative AI journeys. Join the Generative AI Innovation Center to help customers shape the future of Responsible Generative AI while prioritizing security, privacy, and ethical AI practices. In this role, you will play a pivotal role in guiding AWS customers on the responsible and secure adoption of Generative AI, with a focus on Amazon Bedrock, our fully managed service for building generative AI applications. AWS Generative AI Innovation Center is looking for a Generative AI Data Scientist, who will guide customers on operationalizing Generative AI workloads with appropriate guardrails and responsible AI best practices, including techniques for mitigating bias, ensuring fairness, vulnerability assessments, red teaming, model evaluations, hallucinations, grounding model responses, and maintaining transparency in generative AI models. You'll evangelize Responsible AI (RAI), help customers shape RAI policies, develop technical assets to support RAI policies including demonstrating guardrails for content filtering, redacting sensitive data, blocking inappropriate topics, and implementing customer-specific AI safety policies. The assets you develop, will equip AWS teams, partners, and customers to responsibly operationalize generative AI, from PoCs to production workloads. You will engage with policy makers, customers, AWS product owners to influence product direction and help our customers tap into new markets by utilizing GenAI along with AWS Services. As part of the Generative AI Worldwide Specialist organization, Innovation Center, you will interact with AI/ML scientists and engineers, develop white papers, blogs, reference implementations, and presentations to enable customers and partners to fully leverage Generative AI services on Amazon Web Services. You may also create enablement materials for the broader technical field population, to help them understand RAI and how to integrate AWS services into customer architectures. You must have deep understanding of Generative AI models, including their strengths, limitations, and potential risks. You should have expertise in Responsible AI practices, such as bias mitigation, fairness evaluation, and ethical AI principles. In addition you should have hands on experience with AI security best practices, including vulnerability assessments, red teaming, and fine grained data access controls. Candidates must have great communication skills and be very technical, with the ability to impress Amazon Web Services customers at any level, from executive to developer. Previous experience with Amazon Web Services is desired but not required, provided you have experience building large scale solutions. You will get the opportunity to work directly with senior ML engineers and Data Scientists at customers, partners and Amazon Web Services service teams, influencing their roadmaps and driving innovation. Travel up to 40% may be possible. Key job responsibilities - Guide customers on Responsible AI and Generative AI Security: Act as a trusted advisor to our customers, helping them navigate the complex world of Generative AI and ensure they are using it responsibly and securely - Operationalize generative AI workloads: Support customers in taking their generative AI projects from proof-of-concept to production, implementing appropriate guardrails and best practices - Demonstrate Generative AI Risks and Mitigations: Develop technical assets and content to educate customers on the risks of generative AI, including bias, offensive content, cyber threats, prompt hacking, and hallucinations - Collaborate with GenAI Product/Engineering and Customer-Facing Builder Teams: Work closely with the Amazon Bedrock product and engineering teams and customer-facing builders to launch new services, support beta customers, and develop technical assets - Thought Leadership and External Representation: Serve as a thought leader in the Generative AI space, representing AWS at industry events and conferences, such as AWS re:Invent - Develop technical content, workshops, and thought leadership to enable the broader technical community, including Solution Architects, Data Scientists, and Technical Field Community members About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. As a Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams.