The path to carbon reductions in high-growth economic sectors

Confronting climate change requires the participation of governments, companies, academics, civil-society organizations, and the public.

The recent heatwave in Europe is an unequivocal reminder that we are facing a critical moment in the effort to tackle climate change. This urgent global challenge demands collective action across all industries and sectors. While many policies and actions from the private sector provide a foundation to build on, the forward-looking path to full decarbonization won’t always be linear.

Carbon-reduction.jpeg
Amazon’s path to powering operations with 100% renewable energy by 2025 includes partnering to decarbonize the shipping and air freight industries and ordering a worldwide fleet of more than 100,000 electric vehicles.

For decades, the Intergovernmental Panel on Climate Change has sounded the alarm for ambitious action to reduce greenhouse gas (GHG) emissions. This led to the 2015 signing of the Paris Agreement, which provides a unified direction for national governments to reach the global peaking of GHG emissions as soon as possible to achieve a net-zero world by 2050. In parallel, private companies, such as Amazon, have ramped up decarbonization efforts.

With continuous investments globally in renewable energy, sustainable transport, and a more efficient built environment, we should expect to see progress across economic sectors in efforts to tackle climate change. However, there are many factors that can hamper or expedite reduction efforts.

Amazon releases 2021 sustainability report

Amazon's 2021 sustainability report, released today, reports that in 2020, Amazon became the world’s largest corporate purchaser of renewable energy, and in 2021, Amazon reached 85% renewable energy across its businesses. Read the full report.

Companies with net-zero targets need to navigate new technologies and processes, changes in the economy, and future market uncertainties as they implement measures to reduce their GHG emissions. While these challenges apply to all entities, from mature and established companies to new and fast-growing startups, those companies experiencing fast growth may face an even more challenging task as they navigate to quickly decouple their GHG emission trajectories from their financial performance.

To track this progress, GHG intensity metrics (e.g., CO2 equivalent, or CO2e, emitted per kilowatt-hour of electricity generated, or CO2e emitted per sale) are useful tools. These measurements provide transparency to enhance the credibility of companies’ reduction targets, and they help leaders understand emission trajectory trends and target hotspots within their carbon footprints that require increased attention to accelerate emission reductions.

A complex task

It should also be clear that achieving GHG intensity improvements is not an easy or straightforward task. For example, assume that a significant source of the GHG emissions from a company such as Amazon is the operation of diesel trucks. To reduce those trucks’ GHG intensity, Amazon can improve asset utilization, routing, network design, and other logistical procedures. The company can further reduce its GHG intensity by using lower-intensity fuels such as renewable diesel or replacing the trucks with zero- or near-zero-emission vehicles.

How Amazon learned to cut its cardboard waste

For more on Amazon’s sustainability efforts, read how Amazon’s pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

For companies selecting the latter route, factors related to technology development, market readiness and offerings (e.g., supply of electric trucks in the marketplace), or the availability of supporting infrastructure (e.g., charging facilities, renewable gas, hydrogen, and grid capacity) might be out of their control. While companies have a strong responsibility to send demand signals, ultimately, a multitude of factors will determine whether the emissions and intensity improvements are executed in a smooth and linear fashion (e.g., when technologies are ready and available for implementation) or not.

Considering that transportation is a large contributor to Amazon’s emissions, the company has been leveraging technological innovations and investing in internal operational and technical improvements to make it more sustainable. Amazon has made significant investments in renewable and clean energy at facilities and became the world’s largest corporate purchaser of renewable energy, and it cofounded major efforts to accelerate the decarbonization of aviation and maritime shipping.

Notably, in 2019, Amazon cofounded the Climate Pledge — a commitment to reach net-zero carbon by 2040, 10 years ahead of the Paris Agreement — and over 300 other companies have signed the pledge so far. Pledges such as these are only valid and trustworthy when companies then begin to take immediate and actionable steps to decarbonize their operations.

In 2019, Amazon cofounded the Climate Pledge — a commitment to reach net-zero carbon by 2040, 10 years ahead of the Paris Agreement.

Operationally, Amazon has implemented several emissions reduction initiatives, including new delivery modes such as the recently announced cargo bike hub for last-mile deliveries in London; developed its Flex program, which enables individuals to use their personal vehicles to deliver customer packages, and invested in companies developing the next generation of zero-emission delivery vehicles, such as Rivian, from which Amazon ordered 100,000 electric vans.

Despite Amazon’s and other companies’ efforts to meet their net-zero commitments, they will continue to face challenges, as some required infrastructure improvements and technological developments may be out of their operational control, requiring policy changes, government intervention, and large-scale infrastructure changes. For example, in long-haul shipping, there is no clear winner between potential technologies (e.g., battery electric and fuel cell electric), and improvements in aviation fuels are just beginning. Even with a more readily available supply of sustainable aviation fuel, airports will have to rapidly change infrastructure to bring this solution to the aircraft they serve.

These issues not only affect the decision to rely on a particular technology but contribute to uncertainties about the investments required to support that technology (e.g., private or public charging-and-fueling infrastructure). When deciding on decarbonization pathways, companies and other entities have to consider these technological challenges, anticipate the required investments, and recognize the need for complementary operational improvements, as just waiting for technologies to be ready is not an option.

The urgency of reducing GHG emissions requires governments, companies, academics, civil-society organizations, and the public to work together, as individual efforts are not enough. Regulators need to continue providing the market conditions for emissions reduction and enabling regulatory consistency across regions. The public has to continue to play its part as a driver of decarbonization and assume responsibility for being carbon contributors. Companies have to make substantial commitments, reconsider metrics used to evaluate investments, leverage science and new technological developments, and not be afraid to take risks.

Ultimately, for Amazon and other companies with net-zero commitments, the demand for, pricing of, and availability of new technologies, proven at scale and competitive with incumbent solutions, will determine the smoothness and speed of the long-term path to decarbonization. It is no doubt difficult to meet this goal, but the planet does not have other options. I have confidence that the current pace of innovation, public commitments, and investments will enable all economic sectors to achieve the emissions reductions goals that are required by climate science.

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.