The path to carbon reductions in high-growth economic sectors

Confronting climate change requires the participation of governments, companies, academics, civil-society organizations, and the public.

The recent heatwave in Europe is an unequivocal reminder that we are facing a critical moment in the effort to tackle climate change. This urgent global challenge demands collective action across all industries and sectors. While many policies and actions from the private sector provide a foundation to build on, the forward-looking path to full decarbonization won’t always be linear.

Carbon-reduction.jpeg
Amazon’s path to powering operations with 100% renewable energy by 2025 includes partnering to decarbonize the shipping and air freight industries and ordering a worldwide fleet of more than 100,000 electric vehicles.

For decades, the Intergovernmental Panel on Climate Change has sounded the alarm for ambitious action to reduce greenhouse gas (GHG) emissions. This led to the 2015 signing of the Paris Agreement, which provides a unified direction for national governments to reach the global peaking of GHG emissions as soon as possible to achieve a net-zero world by 2050. In parallel, private companies, such as Amazon, have ramped up decarbonization efforts.

With continuous investments globally in renewable energy, sustainable transport, and a more efficient built environment, we should expect to see progress across economic sectors in efforts to tackle climate change. However, there are many factors that can hamper or expedite reduction efforts.

Amazon releases 2021 sustainability report

Amazon's 2021 sustainability report, released today, reports that in 2020, Amazon became the world’s largest corporate purchaser of renewable energy, and in 2021, Amazon reached 85% renewable energy across its businesses. Read the full report.

Companies with net-zero targets need to navigate new technologies and processes, changes in the economy, and future market uncertainties as they implement measures to reduce their GHG emissions. While these challenges apply to all entities, from mature and established companies to new and fast-growing startups, those companies experiencing fast growth may face an even more challenging task as they navigate to quickly decouple their GHG emission trajectories from their financial performance.

To track this progress, GHG intensity metrics (e.g., CO2 equivalent, or CO2e, emitted per kilowatt-hour of electricity generated, or CO2e emitted per sale) are useful tools. These measurements provide transparency to enhance the credibility of companies’ reduction targets, and they help leaders understand emission trajectory trends and target hotspots within their carbon footprints that require increased attention to accelerate emission reductions.

A complex task

It should also be clear that achieving GHG intensity improvements is not an easy or straightforward task. For example, assume that a significant source of the GHG emissions from a company such as Amazon is the operation of diesel trucks. To reduce those trucks’ GHG intensity, Amazon can improve asset utilization, routing, network design, and other logistical procedures. The company can further reduce its GHG intensity by using lower-intensity fuels such as renewable diesel or replacing the trucks with zero- or near-zero-emission vehicles.

How Amazon learned to cut its cardboard waste

For more on Amazon’s sustainability efforts, read how Amazon’s pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

For companies selecting the latter route, factors related to technology development, market readiness and offerings (e.g., supply of electric trucks in the marketplace), or the availability of supporting infrastructure (e.g., charging facilities, renewable gas, hydrogen, and grid capacity) might be out of their control. While companies have a strong responsibility to send demand signals, ultimately, a multitude of factors will determine whether the emissions and intensity improvements are executed in a smooth and linear fashion (e.g., when technologies are ready and available for implementation) or not.

Considering that transportation is a large contributor to Amazon’s emissions, the company has been leveraging technological innovations and investing in internal operational and technical improvements to make it more sustainable. Amazon has made significant investments in renewable and clean energy at facilities and became the world’s largest corporate purchaser of renewable energy, and it cofounded major efforts to accelerate the decarbonization of aviation and maritime shipping.

Notably, in 2019, Amazon cofounded the Climate Pledge — a commitment to reach net-zero carbon by 2040, 10 years ahead of the Paris Agreement — and over 300 other companies have signed the pledge so far. Pledges such as these are only valid and trustworthy when companies then begin to take immediate and actionable steps to decarbonize their operations.

In 2019, Amazon cofounded the Climate Pledge — a commitment to reach net-zero carbon by 2040, 10 years ahead of the Paris Agreement.

Operationally, Amazon has implemented several emissions reduction initiatives, including new delivery modes such as the recently announced cargo bike hub for last-mile deliveries in London; developed its Flex program, which enables individuals to use their personal vehicles to deliver customer packages, and invested in companies developing the next generation of zero-emission delivery vehicles, such as Rivian, from which Amazon ordered 100,000 electric vans.

Despite Amazon’s and other companies’ efforts to meet their net-zero commitments, they will continue to face challenges, as some required infrastructure improvements and technological developments may be out of their operational control, requiring policy changes, government intervention, and large-scale infrastructure changes. For example, in long-haul shipping, there is no clear winner between potential technologies (e.g., battery electric and fuel cell electric), and improvements in aviation fuels are just beginning. Even with a more readily available supply of sustainable aviation fuel, airports will have to rapidly change infrastructure to bring this solution to the aircraft they serve.

These issues not only affect the decision to rely on a particular technology but contribute to uncertainties about the investments required to support that technology (e.g., private or public charging-and-fueling infrastructure). When deciding on decarbonization pathways, companies and other entities have to consider these technological challenges, anticipate the required investments, and recognize the need for complementary operational improvements, as just waiting for technologies to be ready is not an option.

The urgency of reducing GHG emissions requires governments, companies, academics, civil-society organizations, and the public to work together, as individual efforts are not enough. Regulators need to continue providing the market conditions for emissions reduction and enabling regulatory consistency across regions. The public has to continue to play its part as a driver of decarbonization and assume responsibility for being carbon contributors. Companies have to make substantial commitments, reconsider metrics used to evaluate investments, leverage science and new technological developments, and not be afraid to take risks.

Ultimately, for Amazon and other companies with net-zero commitments, the demand for, pricing of, and availability of new technologies, proven at scale and competitive with incumbent solutions, will determine the smoothness and speed of the long-term path to decarbonization. It is no doubt difficult to meet this goal, but the planet does not have other options. I have confidence that the current pace of innovation, public commitments, and investments will enable all economic sectors to achieve the emissions reductions goals that are required by climate science.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York City
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, CA, San Francisco
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Economist IILocation: San Francisco, CaliforniaPosition Responsibilities:Work with fellow economists, scientists and/or senior management on key business problems faced in retail, international retail, third party merchants, search, and/or operations. Apply the frontier of economic thinking to experiment design, forecasting, program evaluation and other areas. Build econometric models using data systems. Apply economic theory to solve business problems. Own the development of economic models and manage the data analysis, modeling and experimentation necessary to estimate and validate the models, in collaboration with scientists and engineers. Develop new techniques to process large data sets, address quantitative problems, and contribute to design of automated systems. Apply tools from applied micro-econometrics (e.g. experimental design, difference-in-difference, regression discontinuity) and forecasting (essential time series models). Leverage big data tools for data extraction. Work closely with business partners to communicate the intuition, implication and detail of economic analyses/modeling and incorporate feedback. Write up and present analysis for distribution to various levels of management at Amazon.Amazon.com is an Equal Opportunity-Affirmative Action Employer - Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation.#0000
US, CA, Palo Alto
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day!The Advertising Forecasting Science team comprises top scientists and engineers based in Palo Alto, California. The team builds forecasting models for advertising campaigns and financial planning, with revenue exceeding tens of billions of dollars. The forecasting science team makes auction prediction and handles bid optimization for billions of daily requests using innovative machine learning algorithms to optimize performance, which generates billions of annual revenue!As an Applied Scientist on this team, you will: Develop scalable and effective machine Learning models with automated training, validation, monitoring and reporting.Work with talented scientists and engineers to solve problems in the domains of forecasting, auction theory, bid optimization, and user clustering.Conduct deep data analyses on massive ad user and contextual data sets.Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions.Stay familiar with the field and apply state-of-the-art machine learning techniques to our domain problems, around forecasting, bidding, allocation, and optimization.Produce peer-reviewed scientific paper in top journals and conferences.Present results, reports, and data insights to both technical and business leadership.Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Job summaryDo you want to have a worldwide impact in Robotics? The Robotics AI team at Amazon builds high-performance, real-time robotic systems that can perceive, learn, and act intelligently alongside humans—at Amazon scale. We invent and scale AI systems for robotics in fulfillment. Our mission is to enable robots to interact safely, efficiently, and fluently with the clutter and uncertainty of real-world fulfillment centers. We hire and develop subject matter experts in robotics with a focus on computer vision, deep learning, intelligent control, semi-supervised and unsupervised learning. We are seeking hands-on, Applied Science Manager to own the development of Perception and Task planning algorithms to advance robotics in our fulfillment network along with leading teams. You will be deep in algorithms and code. A successful candidate would be an experienced people manager with good leadership skills combined with excellent technical depth in Computer vision/ Deep Learning/ Perception systems/ Task planning, great communication skills, and a drive to achieve results in a collaborative team environment. In this role you will provide people management and also apply the latest trends in research to solve real-world problems. You will be an integral part of the core robotics team and work with others to implement robotics systems above and beyond the current state-of-the-art in the field.You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a fearless disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers.Key job responsibilities* As a manager, you will be responsible for delivering and maintaining critical robotic capabilities in the fulfillment network.* You will drive your team to research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines* You will prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in day-to-day people and performance management tasks.* You will keep your technical skills current to contribute to architecture and design discussions. * You will regularly take part in deep-dive exercises and drive technical post-mortem discussions to identify the root cause of complex issues.* Set a vision for your team and create product roadmaps. Help your team sort out technical and product requirements and priorities. Use project management skills to deliver product roadmap items and other cross-team projects.