Long-form-video understanding and synthesis

Four CVPR papers from Prime Video examine a broad set of topics related to efficient model training for understanding and synthesizing long-form cinematic content.

At this year’s Conference on Computer Vision and Pattern Recognition (CVPR), Prime Video presented four papers that indicate the broad range of cutting-edge problems we work on.

In one paper, “Movies2Scenes: Using movie metadata to learn scene representation", we present a novel contrastive-learning approach that uses only commonly available movie metadata to learn a general-purpose scene representation. On a diverse set of tasks evaluated using multiple benchmark datasets, models that use our representations consistently outperform models using existing state-of-the-art representations.

Notably, our learned representation offers an average improvement of 7.9% on the seven classification tasks and 9.7% on the two regression tasks in the Long-Form Video Understanding (LVU) dataset. This effort is an important step toward the first foundation model for general-purpose movie understanding.

In another paper, “Selective structured state-spaces for long-form video understanding”, we expand on the recently proposed S4 model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Our approach is consistently more accurate than the previous state-of-the-art model, by as much as 9.6%, while reducing the memory footprint by 23%.

Related content
Detectors for block corruption, audio artifacts, and errors in audio-video synchronization are just three of Prime Video’s quality assurance tools.

Similarly, our paper "Dynamic inference with grounding based vision and language models" explores the problem of computational redundancy in large vision-and-language models, addressing this challenge by dynamically skipping network layers, dropping input tokens, and fusing multimodal tokens, conditioned on the input image-text pair. Our results show that we can improve the run-time efficiency of the state-of-the-art models by up to 50% on multiple downstream tasks with an accuracy drop of only 0.3%.

Lastly, our paper "LEMaRT: Label-efficient masked region transform for image harmonization" addresses the problem of requiring large amounts of labeled data to train image harmonization models, which modify content from different source images so that they blend together better in composite images. To this end, our method automatically generates training data by simulating defects in appearance that image harmonization models are expected to remove. Our method outperforms previous state-of-the-art approaches by a margin of 0.4dB (mean square error improvement = ~9%) when it is fine-tuned on only 50% of the training data from one of the standard benchmarks (iHarmony4) and by 1.0 dB (MSE improvement = ~21%) when it is trained on the full training dataset.

Toward a foundation model for movie understanding

The term “foundation model” generally relates to (i) a single large model that is (ii) trained on large amounts of mostly unlabeled data and can (iii) drive a number of downstream tasks. While several general-purpose visual-and-textual foundation models exist (e.g., BERT, GPT-4, CLIP, DALL-E 2, etc.), no foundation model particularly geared for movie understanding has been proposed before our work.

This is partly because directly applying existing visual or textual foundation models for movie understanding has limited effectiveness, given the large domain gap between cinematic content and the web-crawled images and text used to train those models. Factors such as the inaccessibility of much large-scale cinematic content, the computational resources required to process it, and the lack of benchmark datasets for evaluation on downstream applications add to the challenge of building a foundation model for movie understanding.

Related content
CVPR papers examine the recovery of 3-D information from camera movement and learning general representations from weakly annotated data.

To address these challenges, we proposed a novel model trained on over five million scenes automatically identified from thousands of movies and comprising more than 45 million frames. Our model does not require any manual annotations and relies only on commonly available movie-level information (genre, synopsis, etc.). The scene representations from our model can be applied to improve the performance of a diverse set of downstream tasks, which is a key step toward building a foundation model for movie understanding.

We use movie metadata to define a measure of movie similarity and use that similarity measure to identify data pairs for contrastive learning. In contrastive learning, a model is trained on both positive pairs — examples that are similar in the relevant way — and negative pairs. During training, the model learns to produce data representations that pull positive pairs together and push negative pairs apart.

Often, the positive pairs are created by augmenting existing examples — say, re-cropping them, reversing them, or re-coloring them. By instead using movies that are considered similar to each other (see below), we ensure that our positive scene-pairs are not only visually similar but also semantically coherent, providing us with a much richer set of geometric and thematic data augmentations that enhance the training objective beyond traditional augmentation approaches.

Overview of approach.png
Overview of our approach.

As can be seen in the video below, our learned scene representation is able to effectively put thematically similar scenes close to each other.

Qualitative examples of similar-scene pairs found using our approach.

In the examples below, we compare our representation with the commonly used CLIP visual representation for scene retrieval using place-labeled scenes in the Long-Form Video Understanding (LVU) dataset. Given a query scene, our representation can capture appearance as well as semantic concepts to retrieve similar scenes more effectively, while CLIP can capture only local appearance-based patterns. For overall retrieval precision on six categories of places, our representation offers a 22.7% improvement over CLIP.

Video representation comparison.png
A comparison of our video representation method and one of its predecessors, CLIP, on the task of place retrieval using the Long-Form Video Understanding (LVU) dataset.

Quantitatively, our learned representation exhibits an average improvement of 7.9% and 9.7% on the seven classification tasks and two regression tasks of the LVU dataset, respectively. Furthermore, using our newly collected MCD dataset in Prime Video, we compare our learned scene representation with state-of-the-art models pretrained on action recognition and image classification datasets. Our scene representation outperforms the alternatives by margins ranging from 3.8% to 50.9% across different models and tasks.

Reducing model complexity for long-form-video understanding

At Prime Video, we’re developing state-of-the-art AI models for cinematic-content understanding to facilitate a variety of downstream use cases. One of the key technical problems to this end is effective modeling of complex spatiotemporal dependencies, particularly in long-form videos such as movies and TV episodes.

Spatiotemporal dependencies.png
Various shots from the movie Stuart Little, showing the complex spatiotemporal dependencies of cinematic content.

Previously proposed convolutional and recurrent neural networks struggle to learn long-term dependencies. In part this is because of exploding or vanishing gradients — where cascading adjustments to model weights grow too small or too large — as information is incorporated over long durations. Vision transformers can use self-attention to address this challenge, attending to particular, prior frames of video when interpreting the current frame. But this is computationally expensive, as it requires pairwise computations between the current frame and its predecessors.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

The recently proposed structured-state-space-sequence (S4) model, with its linear complexity, offers a promising direction in this space; however, we empirically demonstrate that treating all image tokens equally, as the S4 model does, can adversely affect a model’s efficiency and accuracy.

To address this challenge, we present a novel selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous methods, which used mask-based token reduction in transformers, our S5 model avoids the dense self-attention calculation by following the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form-video-understanding tasks more effectively.

S5 model.png
At left is an illustration of our S5 model (a). We introduce a “mask generator” that enacts a selective token-picking strategy, leveraging the feature representations from the momentum S4 model. The momentum S4 model is updated by the S4 model in the moving-average manner. At right is an illustration of the proposed pretraining framework using long-short masked contrastive learning (b), which initializes our S5 model to enhance robustness.

However, as is the case with most token reduction methods, the informative image tokens may be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive-learning (LSMCL) approach that enables our model to predict longer temporal contexts using shorter input videos.

We present extensive comparative results using three challenging long-form video-understanding datasets (LVU, COIN, and Breakfast), demonstrating that our approach is consistently more accurate than the previous state-of-the-art S4 model, by as much as 9.6% on one dataset, with a memory footprint that’s 23% smaller.

Dynamic inference of multimodal models using reinforcement learning

The availability of transformer models operating over multiple data modalities as well as large-scale pretraining approaches has led to significant progress on joint image-and-language models. However, these models impose high computational costs and therefore offer low run-time efficiency, making them difficult to apply to Prime Video’s large catalogue.

Although approaches such as pruning, knowledge distillation, and quantization can help address this challenge, they can incur significant drops in accuracy (e.g., ≥ 1% at ≥ 50% model compression rates), as they are primarily designed for model-parameter reduction, not improving run-time efficiency.

Related content
The switch to WebAssembly increases stability, speed.

To address this challenge, we propose a model that saves computation by dynamically skipping layers of a multimodal network; pruning input tokens from either the language backbone, the image backbone, or both; and fusing tokens from the separate backbones, conditioned on the input image-text pair.

Most multimodal transformer models include multihead self-attention and feed-forward network layers, which can be skipped for some inputs. Additionally, we remove redundant tokens at different levels of the backbones and fuse the image tokens with the language tokens in an adaptive manner. To learn policies for dynamic inference, we train agents using reinforcement learning.

Our results demonstrate that we can improve the run-time efficiency of the state-of-the-art models MDETR and GLIP by up to 50% on the tasks of referring-expression comprehension, segmentation, and visual question-answering, with a maximum accuracy drop of only 0.3%.

Accuracy vs FPS:FLOPS.png
Accuracy-vs.-frames-per-second (a and b) and accuracy-vs.-GFLOPS (c and d) comparisons of the evaluated models. As shown, our proposed method comfortably outperforms multiple alternative approaches on both metrics while maintaining high accuracy.

Improving label efficiency of image harmonization models

Image harmonization is an important component of the broader problem of image composition, where new images are created by extracting foreground regions from one image and transferring them to another image in a photorealistic manner.

Related content
Two papers at WACV propose neural models for enhancing video-streaming experiences.

The main technical challenge for image harmonization is the appearance mismatch between the foreground extracted from the source image and the background of the destination image. Image harmonization aims to adjust the appearance of the foreground to make it compatible with the background. However, training traditional models for image harmonization requires a large amount of labeled data, which is costly and time-consuming to obtain.

To address this challenge, we introduce a novel approach to pretraining image harmonization models, LEMaRT, which automatically generates training data by simulating the types of defects that image harmonization models are expected to remove. LEMaRT takes an image as input, selects a region in that image, and applies a set of appearance transformations to it. We use these modified images, along with the original images, to pretrain our image harmonization model. Furthermore, we introduce an image harmonization model, SwinIH, by retrofitting the previously proposed Swin Transformer with a combination of local and global self-attention mechanisms.

Image transformations.png
Given an image, our approach applies a set of transformations (e.g., brightness, hue adjustment) to obtain a transformed image that is combined with the original image to form a composite. These composite images are used to pretrain our image harmonization transformer model. As shown in the figure, our model is capable of reconstructing photorealistic outputs.

Pretraining our SwinIH model with our LEMaRT approach results in a new state of the art for image harmonization, while being label-efficient, i.e., consuming less annotated data for fine-tuning than existing methods. Notably, on the iHarmony4 dataset, SwinIH outperforms the state of the art, i.e., SCS-Co by a margin of 0.4 dB when it is fine-tuned on only 50% of the training data and by 1.0 dB when it is trained on the full training dataset.

LeMART performance.png
Using our LEMaRT pretraining scheme, our image harmonization model (SwinIH) surpasses state-of-the-art (SOTA) counterparts with less than 40% of the training data from iHarmony4 for fine-tuning. Qualitatively, LEMaRT is better than competing methods at color correction, thanks to the distribution of photorealistic images that it learns from a large amount of unlabeled data during self-supervised pretraining.

Qualitative comparisons suggest that LEMaRT is better at color correction than prior methods, thanks to the pretraining process, during which LEMaRT learns the distribution of photorealistic images.

Qualitative comparison.png
Qualitative comparison between our method, LEMaRT (SwinIH), and three state-of-the-art methods (RainNet, iS2AM, DHT+) on the iHarmony4 dataset.

Research areas

Related content

ES, M, Madrid
Amazon's International Technology org in EU (EU INTech) is creating new ways for Amazon customers discovering Amazon catalog through new and innovative Customer experiences. Our vision is to provide the most relevant content and CX for their shopping mission. We are responsible for building the software and machine learning models to surface high quality and relevant content to the Amazon customers worldwide across the site. The team, mainly located in Madrid Technical Hub, London and Luxembourg, comprises Software Developer and ML Engineers, Applied Scientists, Product Managers, Technical Product Managers and UX Designers who are experts on several areas of ranking, computer vision, recommendations systems, Search as well as CX. Are you interested on how the experiences that fuel Catalog and Search are built to scale to customers WW? Are interesting on how we use state of the art AI to generate and provide the most relevant content? Key job responsibilities We are looking for Applied Scientists who are passionate to solve highly ambiguous and challenging problems at global scale. You will be responsible for major science challenges for our team, including working with text to image and image to text state of the art models to scale to enable new Customer Experiences WW. You will design, develop, deliver and support a variety of models in collaboration with a variety of roles and partner teams around the world. You will influence scientific direction and best practices and maintain quality on team deliverables. We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, NY, New York
Amazon Advertising exists at the intersection of marketing and e-commerce and offers advertisers a rich array of innovative advertising solutions across Amazon-owned and third party properties. We believe that advertising, when done well, can greatly enhance the value of the customer experience and generate a positive return on investment for our advertising partners. We are currently looking for a highly skilled and motivated Data Scientist to help scale our growing advertising business. The Data Scientist is a key member of the Global Marketing Insights team at Amazon Ads, working with marketing, product, retail and other Amazon business partners to analyze and improve advertisers’ performance on Amazon, in support of their marketing objectives. You will work with Amazon's unique data and translate it into high-quality and actionable insights and recommendations to improve the effectiveness of advertiser campaigns and unlock business opportunities. Day to day activities include analyzing advertiser behaviors to develop data-driven insights on what tactics and strategies lead to success. You will also build automated solutions to generate science driven insights at scale, that are distributed to our advertisers across channels. Basic qualifications - Bachelor's or Master's degree in Engineering, Statistics, Economics, or a related technical field - Proven experience in data analytics or data science roles - Proficiency with SQL and Python - Strong understanding of basic statistical techniques and methodologies such as distributions, hypothesis testing, regressions, experimentation, A/B Testing etc. - Excellent organizational, interpersonal, and communication skills (both written and verbal) - Ability to work cross-functionally and with technical and non-technical stakeholders Preferred qualifications - Understanding of advanced statistical techniques and methodologies such as causal inference, propensity score matching, machine learning etc. - Experience with developing and deploying production machine learning models, especially on cloud platforms - Experience building and managing data pipelines - Experience with digital advertising products, performance analytics , marketing and advertising campaigns - MBA, Master’s, or Doctoral degree in Economics, Engineering, Marketing, Statistics, Advertising, or related fields - Publication track record/writing experience (ex. published a paper in a technical journal or trade publication) About the team The Marketing Insights team is responsible for delivering science backed insights to millions of advertisers via our marketing messages. Our team is distributed across the globe and is building cutting edge data science to identify and communicate the impact of various advertising strategies for our products. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
Imagine being part of an agile team where your ideas have the potential to reach millions of customers. Picture working on cutting-edge, customer-facing solutions, where every team member is a critical voice in the decision making process. Envision being able to leverage the resources of a Fortune 500 company within the atmosphere of a start-up. Welcome to Amazon’s NCRC team. We solve complex problems in an ambiguous space, focusing on reducing return costs and improving the customer experience. We build solutions that are distributed on a large scale, positively impacting experiences for our customers and sellers. Come innovate with the NCRC team! The Net Cost of Refunds and Concessions (NCRC) team is looking for a Senior Manager Data Science to lead a team of economists, business intelligence engineers and business analysts who investigate business problems, develop insights and build models & algorithms that predict and quantify new opportunity. The team instigates and productionalizes nascent solutions around four pillars: outbound defects, inbound defects, yield optimization and returns reduction. These four pillars interact, resulting in impacts to our overall return rate, associated costs, and customer satisfaction. You may have seen some downstream impacts of our work including Amazon.com customer satisfaction badges on the website and app, new returns drop off optionality, and faster refunds for low cost items. In this role, you will set the science vision and direction for the team, collaborating with internal stakeholders across our returns and re-commerce teams to scale and advance science solutions. This role is based in Bellevue, WA Key job responsibilities * Single threaded leader responsible for setting and driving science strategy for the organization. * Lead and provide coaching to a team of Scientists, Economists, Business Intelligence Engineers and Business Analysts. * Partner with Engineering, Product and Machine Learning leaders to deliver insights and recommendations across NCRC initiatives. * Lead research and development of models and science products powering return cost reduction. * Educate and evangelize across internal teams on analytics, insights and measurement by writing whitepapers, knowledge documentation and delivering learning sessions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and Scala would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Chicago, IL, USA | Seattle, WA, USA | Washington, DC, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI. This group is entrusted with developing core natural language processing, generative AI, deep learning and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, CA, Santa Clara
We are looking for an Applied Scientist who is passionate about building services and tools for developers that leverage artificial intelligence and machine learning. You will be part of a team building Large Language Model (LLM)-based services with the focus on enhancing the developer experience in the Cloud. The team works in close collaboration with other AWS services such as AWS Cloud9, the AWS IDE Toolkit and AWS Bedrock. If you are excited about working in cloud computing and building new AWS services, then we'd love to talk to you. As an Applied Scientist, you are recognized for your expertise, advise team members on a range of machine learning topics, and work closely with software engineers to drive the delivery of end-to-end modeling solutions. Your work focuses on ambiguous problem areas where the business problem or opportunity may not yet be defined. The problems that you take on require scientific breakthroughs. You take a long-term view of the business objectives, product roadmaps, technologies, and how they should evolve. You drive mindful discussions with customers, engineers, and scientist peers. You bring perspective and provide context for current technology choices, and make recommendations on the right modeling and component design approach to achieve the desired customer experience and business outcome. Key job responsibilities - Understand the challenges that developers face when building software today, and develop generalizable solutions. - Collaborate with developers and pave the way towards bringing your solution into production systems. Lead cross team projects and ensure technical blockers are resolved - Communicate and document your research via publishing papers in external scientific venues. A day in the life Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. About the team The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA