Long-form-video understanding and synthesis

Four CVPR papers from Prime Video examine a broad set of topics related to efficient model training for understanding and synthesizing long-form cinematic content.

At this year’s Conference on Computer Vision and Pattern Recognition (CVPR), Prime Video presented four papers that indicate the broad range of cutting-edge problems we work on.

In one paper, “Movies2Scenes: Using movie metadata to learn scene representation", we present a novel contrastive-learning approach that uses only commonly available movie metadata to learn a general-purpose scene representation. On a diverse set of tasks evaluated using multiple benchmark datasets, models that use our representations consistently outperform models using existing state-of-the-art representations.

Notably, our learned representation offers an average improvement of 7.9% on the seven classification tasks and 9.7% on the two regression tasks in the Long-Form Video Understanding (LVU) dataset. This effort is an important step toward the first foundation model for general-purpose movie understanding.

In another paper, “Selective structured state-spaces for long-form video understanding”, we expand on the recently proposed S4 model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Our approach is consistently more accurate than the previous state-of-the-art model, by as much as 9.6%, while reducing the memory footprint by 23%.

Related content
Detectors for block corruption, audio artifacts, and errors in audio-video synchronization are just three of Prime Video’s quality assurance tools.

Similarly, our paper "Dynamic inference with grounding based vision and language models" explores the problem of computational redundancy in large vision-and-language models, addressing this challenge by dynamically skipping network layers, dropping input tokens, and fusing multimodal tokens, conditioned on the input image-text pair. Our results show that we can improve the run-time efficiency of the state-of-the-art models by up to 50% on multiple downstream tasks with an accuracy drop of only 0.3%.

Lastly, our paper "LEMaRT: Label-efficient masked region transform for image harmonization" addresses the problem of requiring large amounts of labeled data to train image harmonization models, which modify content from different source images so that they blend together better in composite images. To this end, our method automatically generates training data by simulating defects in appearance that image harmonization models are expected to remove. Our method outperforms previous state-of-the-art approaches by a margin of 0.4dB (mean square error improvement = ~9%) when it is fine-tuned on only 50% of the training data from one of the standard benchmarks (iHarmony4) and by 1.0 dB (MSE improvement = ~21%) when it is trained on the full training dataset.

Toward a foundation model for movie understanding

The term “foundation model” generally relates to (i) a single large model that is (ii) trained on large amounts of mostly unlabeled data and can (iii) drive a number of downstream tasks. While several general-purpose visual-and-textual foundation models exist (e.g., BERT, GPT-4, CLIP, DALL-E 2, etc.), no foundation model particularly geared for movie understanding has been proposed before our work.

This is partly because directly applying existing visual or textual foundation models for movie understanding has limited effectiveness, given the large domain gap between cinematic content and the web-crawled images and text used to train those models. Factors such as the inaccessibility of much large-scale cinematic content, the computational resources required to process it, and the lack of benchmark datasets for evaluation on downstream applications add to the challenge of building a foundation model for movie understanding.

Related content
CVPR papers examine the recovery of 3-D information from camera movement and learning general representations from weakly annotated data.

To address these challenges, we proposed a novel model trained on over five million scenes automatically identified from thousands of movies and comprising more than 45 million frames. Our model does not require any manual annotations and relies only on commonly available movie-level information (genre, synopsis, etc.). The scene representations from our model can be applied to improve the performance of a diverse set of downstream tasks, which is a key step toward building a foundation model for movie understanding.

We use movie metadata to define a measure of movie similarity and use that similarity measure to identify data pairs for contrastive learning. In contrastive learning, a model is trained on both positive pairs — examples that are similar in the relevant way — and negative pairs. During training, the model learns to produce data representations that pull positive pairs together and push negative pairs apart.

Often, the positive pairs are created by augmenting existing examples — say, re-cropping them, reversing them, or re-coloring them. By instead using movies that are considered similar to each other (see below), we ensure that our positive scene-pairs are not only visually similar but also semantically coherent, providing us with a much richer set of geometric and thematic data augmentations that enhance the training objective beyond traditional augmentation approaches.

Overview of approach.png
Overview of our approach.

As can be seen in the video below, our learned scene representation is able to effectively put thematically similar scenes close to each other.

Qualitative examples of similar-scene pairs found using our approach.

In the examples below, we compare our representation with the commonly used CLIP visual representation for scene retrieval using place-labeled scenes in the Long-Form Video Understanding (LVU) dataset. Given a query scene, our representation can capture appearance as well as semantic concepts to retrieve similar scenes more effectively, while CLIP can capture only local appearance-based patterns. For overall retrieval precision on six categories of places, our representation offers a 22.7% improvement over CLIP.

Video representation comparison.png
A comparison of our video representation method and one of its predecessors, CLIP, on the task of place retrieval using the Long-Form Video Understanding (LVU) dataset.

Quantitatively, our learned representation exhibits an average improvement of 7.9% and 9.7% on the seven classification tasks and two regression tasks of the LVU dataset, respectively. Furthermore, using our newly collected MCD dataset in Prime Video, we compare our learned scene representation with state-of-the-art models pretrained on action recognition and image classification datasets. Our scene representation outperforms the alternatives by margins ranging from 3.8% to 50.9% across different models and tasks.

Reducing model complexity for long-form-video understanding

At Prime Video, we’re developing state-of-the-art AI models for cinematic-content understanding to facilitate a variety of downstream use cases. One of the key technical problems to this end is effective modeling of complex spatiotemporal dependencies, particularly in long-form videos such as movies and TV episodes.

Spatiotemporal dependencies.png
Various shots from the movie Stuart Little, showing the complex spatiotemporal dependencies of cinematic content.

Previously proposed convolutional and recurrent neural networks struggle to learn long-term dependencies. In part this is because of exploding or vanishing gradients — where cascading adjustments to model weights grow too small or too large — as information is incorporated over long durations. Vision transformers can use self-attention to address this challenge, attending to particular, prior frames of video when interpreting the current frame. But this is computationally expensive, as it requires pairwise computations between the current frame and its predecessors.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

The recently proposed structured-state-space-sequence (S4) model, with its linear complexity, offers a promising direction in this space; however, we empirically demonstrate that treating all image tokens equally, as the S4 model does, can adversely affect a model’s efficiency and accuracy.

To address this challenge, we present a novel selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous methods, which used mask-based token reduction in transformers, our S5 model avoids the dense self-attention calculation by following the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form-video-understanding tasks more effectively.

S5 model.png
At left is an illustration of our S5 model (a). We introduce a “mask generator” that enacts a selective token-picking strategy, leveraging the feature representations from the momentum S4 model. The momentum S4 model is updated by the S4 model in the moving-average manner. At right is an illustration of the proposed pretraining framework using long-short masked contrastive learning (b), which initializes our S5 model to enhance robustness.

However, as is the case with most token reduction methods, the informative image tokens may be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive-learning (LSMCL) approach that enables our model to predict longer temporal contexts using shorter input videos.

We present extensive comparative results using three challenging long-form video-understanding datasets (LVU, COIN, and Breakfast), demonstrating that our approach is consistently more accurate than the previous state-of-the-art S4 model, by as much as 9.6% on one dataset, with a memory footprint that’s 23% smaller.

Dynamic inference of multimodal models using reinforcement learning

The availability of transformer models operating over multiple data modalities as well as large-scale pretraining approaches has led to significant progress on joint image-and-language models. However, these models impose high computational costs and therefore offer low run-time efficiency, making them difficult to apply to Prime Video’s large catalogue.

Although approaches such as pruning, knowledge distillation, and quantization can help address this challenge, they can incur significant drops in accuracy (e.g., ≥ 1% at ≥ 50% model compression rates), as they are primarily designed for model-parameter reduction, not improving run-time efficiency.

Related content
The switch to WebAssembly increases stability, speed.

To address this challenge, we propose a model that saves computation by dynamically skipping layers of a multimodal network; pruning input tokens from either the language backbone, the image backbone, or both; and fusing tokens from the separate backbones, conditioned on the input image-text pair.

Most multimodal transformer models include multihead self-attention and feed-forward network layers, which can be skipped for some inputs. Additionally, we remove redundant tokens at different levels of the backbones and fuse the image tokens with the language tokens in an adaptive manner. To learn policies for dynamic inference, we train agents using reinforcement learning.

Our results demonstrate that we can improve the run-time efficiency of the state-of-the-art models MDETR and GLIP by up to 50% on the tasks of referring-expression comprehension, segmentation, and visual question-answering, with a maximum accuracy drop of only 0.3%.

Accuracy vs FPS:FLOPS.png
Accuracy-vs.-frames-per-second (a and b) and accuracy-vs.-GFLOPS (c and d) comparisons of the evaluated models. As shown, our proposed method comfortably outperforms multiple alternative approaches on both metrics while maintaining high accuracy.

Improving label efficiency of image harmonization models

Image harmonization is an important component of the broader problem of image composition, where new images are created by extracting foreground regions from one image and transferring them to another image in a photorealistic manner.

Related content
Two papers at WACV propose neural models for enhancing video-streaming experiences.

The main technical challenge for image harmonization is the appearance mismatch between the foreground extracted from the source image and the background of the destination image. Image harmonization aims to adjust the appearance of the foreground to make it compatible with the background. However, training traditional models for image harmonization requires a large amount of labeled data, which is costly and time-consuming to obtain.

To address this challenge, we introduce a novel approach to pretraining image harmonization models, LEMaRT, which automatically generates training data by simulating the types of defects that image harmonization models are expected to remove. LEMaRT takes an image as input, selects a region in that image, and applies a set of appearance transformations to it. We use these modified images, along with the original images, to pretrain our image harmonization model. Furthermore, we introduce an image harmonization model, SwinIH, by retrofitting the previously proposed Swin Transformer with a combination of local and global self-attention mechanisms.

Image transformations.png
Given an image, our approach applies a set of transformations (e.g., brightness, hue adjustment) to obtain a transformed image that is combined with the original image to form a composite. These composite images are used to pretrain our image harmonization transformer model. As shown in the figure, our model is capable of reconstructing photorealistic outputs.

Pretraining our SwinIH model with our LEMaRT approach results in a new state of the art for image harmonization, while being label-efficient, i.e., consuming less annotated data for fine-tuning than existing methods. Notably, on the iHarmony4 dataset, SwinIH outperforms the state of the art, i.e., SCS-Co by a margin of 0.4 dB when it is fine-tuned on only 50% of the training data and by 1.0 dB when it is trained on the full training dataset.

LeMART performance.png
Using our LEMaRT pretraining scheme, our image harmonization model (SwinIH) surpasses state-of-the-art (SOTA) counterparts with less than 40% of the training data from iHarmony4 for fine-tuning. Qualitatively, LEMaRT is better than competing methods at color correction, thanks to the distribution of photorealistic images that it learns from a large amount of unlabeled data during self-supervised pretraining.

Qualitative comparisons suggest that LEMaRT is better at color correction than prior methods, thanks to the pretraining process, during which LEMaRT learns the distribution of photorealistic images.

Qualitative comparison.png
Qualitative comparison between our method, LEMaRT (SwinIH), and three state-of-the-art methods (RainNet, iS2AM, DHT+) on the iHarmony4 dataset.

Research areas

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation