Long-form-video understanding and synthesis

Four CVPR papers from Prime Video examine a broad set of topics related to efficient model training for understanding and synthesizing long-form cinematic content.

At this year’s Conference on Computer Vision and Pattern Recognition (CVPR), Prime Video presented four papers that indicate the broad range of cutting-edge problems we work on.

In one paper, “Movies2Scenes: Using movie metadata to learn scene representation", we present a novel contrastive-learning approach that uses only commonly available movie metadata to learn a general-purpose scene representation. On a diverse set of tasks evaluated using multiple benchmark datasets, models that use our representations consistently outperform models using existing state-of-the-art representations.

Notably, our learned representation offers an average improvement of 7.9% on the seven classification tasks and 9.7% on the two regression tasks in the Long-Form Video Understanding (LVU) dataset. This effort is an important step toward the first foundation model for general-purpose movie understanding.

In another paper, “Selective structured state-spaces for long-form video understanding”, we expand on the recently proposed S4 model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Our approach is consistently more accurate than the previous state-of-the-art model, by as much as 9.6%, while reducing the memory footprint by 23%.

Related content
Detectors for block corruption, audio artifacts, and errors in audio-video synchronization are just three of Prime Video’s quality assurance tools.

Similarly, our paper "Dynamic inference with grounding based vision and language models" explores the problem of computational redundancy in large vision-and-language models, addressing this challenge by dynamically skipping network layers, dropping input tokens, and fusing multimodal tokens, conditioned on the input image-text pair. Our results show that we can improve the run-time efficiency of the state-of-the-art models by up to 50% on multiple downstream tasks with an accuracy drop of only 0.3%.

Lastly, our paper "LEMaRT: Label-efficient masked region transform for image harmonization" addresses the problem of requiring large amounts of labeled data to train image harmonization models, which modify content from different source images so that they blend together better in composite images. To this end, our method automatically generates training data by simulating defects in appearance that image harmonization models are expected to remove. Our method outperforms previous state-of-the-art approaches by a margin of 0.4dB (mean square error improvement = ~9%) when it is fine-tuned on only 50% of the training data from one of the standard benchmarks (iHarmony4) and by 1.0 dB (MSE improvement = ~21%) when it is trained on the full training dataset.

Toward a foundation model for movie understanding

The term “foundation model” generally relates to (i) a single large model that is (ii) trained on large amounts of mostly unlabeled data and can (iii) drive a number of downstream tasks. While several general-purpose visual-and-textual foundation models exist (e.g., BERT, GPT-4, CLIP, DALL-E 2, etc.), no foundation model particularly geared for movie understanding has been proposed before our work.

This is partly because directly applying existing visual or textual foundation models for movie understanding has limited effectiveness, given the large domain gap between cinematic content and the web-crawled images and text used to train those models. Factors such as the inaccessibility of much large-scale cinematic content, the computational resources required to process it, and the lack of benchmark datasets for evaluation on downstream applications add to the challenge of building a foundation model for movie understanding.

Related content
CVPR papers examine the recovery of 3-D information from camera movement and learning general representations from weakly annotated data.

To address these challenges, we proposed a novel model trained on over five million scenes automatically identified from thousands of movies and comprising more than 45 million frames. Our model does not require any manual annotations and relies only on commonly available movie-level information (genre, synopsis, etc.). The scene representations from our model can be applied to improve the performance of a diverse set of downstream tasks, which is a key step toward building a foundation model for movie understanding.

We use movie metadata to define a measure of movie similarity and use that similarity measure to identify data pairs for contrastive learning. In contrastive learning, a model is trained on both positive pairs — examples that are similar in the relevant way — and negative pairs. During training, the model learns to produce data representations that pull positive pairs together and push negative pairs apart.

Often, the positive pairs are created by augmenting existing examples — say, re-cropping them, reversing them, or re-coloring them. By instead using movies that are considered similar to each other (see below), we ensure that our positive scene-pairs are not only visually similar but also semantically coherent, providing us with a much richer set of geometric and thematic data augmentations that enhance the training objective beyond traditional augmentation approaches.

Overview of approach.png
Overview of our approach.

As can be seen in the video below, our learned scene representation is able to effectively put thematically similar scenes close to each other.

Qualitative examples of similar-scene pairs found using our approach.

In the examples below, we compare our representation with the commonly used CLIP visual representation for scene retrieval using place-labeled scenes in the Long-Form Video Understanding (LVU) dataset. Given a query scene, our representation can capture appearance as well as semantic concepts to retrieve similar scenes more effectively, while CLIP can capture only local appearance-based patterns. For overall retrieval precision on six categories of places, our representation offers a 22.7% improvement over CLIP.

Video representation comparison.png
A comparison of our video representation method and one of its predecessors, CLIP, on the task of place retrieval using the Long-Form Video Understanding (LVU) dataset.

Quantitatively, our learned representation exhibits an average improvement of 7.9% and 9.7% on the seven classification tasks and two regression tasks of the LVU dataset, respectively. Furthermore, using our newly collected MCD dataset in Prime Video, we compare our learned scene representation with state-of-the-art models pretrained on action recognition and image classification datasets. Our scene representation outperforms the alternatives by margins ranging from 3.8% to 50.9% across different models and tasks.

Reducing model complexity for long-form-video understanding

At Prime Video, we’re developing state-of-the-art AI models for cinematic-content understanding to facilitate a variety of downstream use cases. One of the key technical problems to this end is effective modeling of complex spatiotemporal dependencies, particularly in long-form videos such as movies and TV episodes.

Spatiotemporal dependencies.png
Various shots from the movie Stuart Little, showing the complex spatiotemporal dependencies of cinematic content.

Previously proposed convolutional and recurrent neural networks struggle to learn long-term dependencies. In part this is because of exploding or vanishing gradients — where cascading adjustments to model weights grow too small or too large — as information is incorporated over long durations. Vision transformers can use self-attention to address this challenge, attending to particular, prior frames of video when interpreting the current frame. But this is computationally expensive, as it requires pairwise computations between the current frame and its predecessors.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

The recently proposed structured-state-space-sequence (S4) model, with its linear complexity, offers a promising direction in this space; however, we empirically demonstrate that treating all image tokens equally, as the S4 model does, can adversely affect a model’s efficiency and accuracy.

To address this challenge, we present a novel selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens, resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous methods, which used mask-based token reduction in transformers, our S5 model avoids the dense self-attention calculation by following the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form-video-understanding tasks more effectively.

S5 model.png
At left is an illustration of our S5 model (a). We introduce a “mask generator” that enacts a selective token-picking strategy, leveraging the feature representations from the momentum S4 model. The momentum S4 model is updated by the S4 model in the moving-average manner. At right is an illustration of the proposed pretraining framework using long-short masked contrastive learning (b), which initializes our S5 model to enhance robustness.

However, as is the case with most token reduction methods, the informative image tokens may be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive-learning (LSMCL) approach that enables our model to predict longer temporal contexts using shorter input videos.

We present extensive comparative results using three challenging long-form video-understanding datasets (LVU, COIN, and Breakfast), demonstrating that our approach is consistently more accurate than the previous state-of-the-art S4 model, by as much as 9.6% on one dataset, with a memory footprint that’s 23% smaller.

Dynamic inference of multimodal models using reinforcement learning

The availability of transformer models operating over multiple data modalities as well as large-scale pretraining approaches has led to significant progress on joint image-and-language models. However, these models impose high computational costs and therefore offer low run-time efficiency, making them difficult to apply to Prime Video’s large catalogue.

Although approaches such as pruning, knowledge distillation, and quantization can help address this challenge, they can incur significant drops in accuracy (e.g., ≥ 1% at ≥ 50% model compression rates), as they are primarily designed for model-parameter reduction, not improving run-time efficiency.

Related content
The switch to WebAssembly increases stability, speed.

To address this challenge, we propose a model that saves computation by dynamically skipping layers of a multimodal network; pruning input tokens from either the language backbone, the image backbone, or both; and fusing tokens from the separate backbones, conditioned on the input image-text pair.

Most multimodal transformer models include multihead self-attention and feed-forward network layers, which can be skipped for some inputs. Additionally, we remove redundant tokens at different levels of the backbones and fuse the image tokens with the language tokens in an adaptive manner. To learn policies for dynamic inference, we train agents using reinforcement learning.

Our results demonstrate that we can improve the run-time efficiency of the state-of-the-art models MDETR and GLIP by up to 50% on the tasks of referring-expression comprehension, segmentation, and visual question-answering, with a maximum accuracy drop of only 0.3%.

Accuracy vs FPS:FLOPS.png
Accuracy-vs.-frames-per-second (a and b) and accuracy-vs.-GFLOPS (c and d) comparisons of the evaluated models. As shown, our proposed method comfortably outperforms multiple alternative approaches on both metrics while maintaining high accuracy.

Improving label efficiency of image harmonization models

Image harmonization is an important component of the broader problem of image composition, where new images are created by extracting foreground regions from one image and transferring them to another image in a photorealistic manner.

Related content
Two papers at WACV propose neural models for enhancing video-streaming experiences.

The main technical challenge for image harmonization is the appearance mismatch between the foreground extracted from the source image and the background of the destination image. Image harmonization aims to adjust the appearance of the foreground to make it compatible with the background. However, training traditional models for image harmonization requires a large amount of labeled data, which is costly and time-consuming to obtain.

To address this challenge, we introduce a novel approach to pretraining image harmonization models, LEMaRT, which automatically generates training data by simulating the types of defects that image harmonization models are expected to remove. LEMaRT takes an image as input, selects a region in that image, and applies a set of appearance transformations to it. We use these modified images, along with the original images, to pretrain our image harmonization model. Furthermore, we introduce an image harmonization model, SwinIH, by retrofitting the previously proposed Swin Transformer with a combination of local and global self-attention mechanisms.

Image transformations.png
Given an image, our approach applies a set of transformations (e.g., brightness, hue adjustment) to obtain a transformed image that is combined with the original image to form a composite. These composite images are used to pretrain our image harmonization transformer model. As shown in the figure, our model is capable of reconstructing photorealistic outputs.

Pretraining our SwinIH model with our LEMaRT approach results in a new state of the art for image harmonization, while being label-efficient, i.e., consuming less annotated data for fine-tuning than existing methods. Notably, on the iHarmony4 dataset, SwinIH outperforms the state of the art, i.e., SCS-Co by a margin of 0.4 dB when it is fine-tuned on only 50% of the training data and by 1.0 dB when it is trained on the full training dataset.

LeMART performance.png
Using our LEMaRT pretraining scheme, our image harmonization model (SwinIH) surpasses state-of-the-art (SOTA) counterparts with less than 40% of the training data from iHarmony4 for fine-tuning. Qualitatively, LEMaRT is better than competing methods at color correction, thanks to the distribution of photorealistic images that it learns from a large amount of unlabeled data during self-supervised pretraining.

Qualitative comparisons suggest that LEMaRT is better at color correction than prior methods, thanks to the pretraining process, during which LEMaRT learns the distribution of photorealistic images.

Qualitative comparison.png
Qualitative comparison between our method, LEMaRT (SwinIH), and three state-of-the-art methods (RainNet, iS2AM, DHT+) on the iHarmony4 dataset.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
US, CA, Santa Clara
The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. As a Senior Applied Scientist at Amazon Ads, you will: • Research and implement cutting-edge machine learning (ML) approaches, including applications of generative AI and large language models • Develop and deploy innovative ML solutions spanning multiple disciplines, from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models • Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data • Build and optimize models that balance multiple stakeholder needs, helping customers discover relevant products while enabling advertisers to achieve their goals efficiently • Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams that include engineers, product managers, and other scientists • Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact • Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As an Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience A day in the life Why you will love this role: This role offers unprecedented breadth in ML applications, and access to extensive computational resources and rich datasets that enable you to build truly innovative solutions. You'll work on projects that span the full advertising lifecycle - from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll also work alongside talented engineers, scientists and product leaders in a culture that encourages innovation, experimentation, and bias for action where you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. About the team Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their mark. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two applied scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents for our autonomous campaigns experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Autonomous Campaigns team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware campaign creation and management system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The AGI Autonomy Perception team performs applied machine learning research, including model training, dataset design, pre- and post- training. We train Nova Act, our state-of-the art computer use agent, to understand arbitrary human interfaces in the digital world. We are seeking a Machine Learning Engineer who combines strong ML expertise with software engineering excellence to scale and optimize our ML workflows. You will be a key member on our research team, helping accelerate the development of our leading computer-use agent. We are seeking a strong engineer who has a passion for scaling ML models and datasets, designing new ML frameworks, improving engineering practices, and accelerating the velocity of AI development. You will be hired as a Member of Technical Staff. Key job responsibilities * Design, build, and deploy machine learning models, frameworks, and data pipelines * Optimize ML training, inference, and evaluation workflows for reliability and performance * Evaluate and improve ML model performance and metrics * Develop tools and infrastructure to enhance ML development productivity
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. This position will be part of the Conversational Ad Experiences team within the Amazon Advertising organization. Our cross-functional team focuses on designing, developing and launching innovative ad experiences delivered to shoppers in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. We are seeking a science leader for our team within the Sponsored Products & Brands organization. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and ads recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities - Serve as a tech lead for defining the science roadmap for multiple projects in the conversational ad experiences space powered by LLMs. - Build POCs, optimize and deploy models into production, run experiments, perform deep dives on experiment data to gather actionable learnings and communicate them to senior leadership - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Work closely with product managers to contribute to our mission, and proactively identify opportunities where science can help improve customer experience - Research new machine learning approaches to drive continued scientific innovation - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences - Help attract and recruit technical talent, mentor scientists and engineers in the team
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders