Prime Video's work on 3-D scene reconstruction, image representation

CVPR papers examine the recovery of 3-D information from camera movement and learning general representations from weakly annotated data.

At this year’s Conference on Computer Vision and Pattern Recognition (CVPR), Prime Video is presenting a pair of papers that indicate the range of problems we work on.

In one paper, “Depth-guided sparse structure-from-motion for movies and TV shows”, we present a method for determining the camera movement and 3-D geometry of scenes depicted in videos. An important application of this work is to enable the accurate insertion of digital objects into already recorded videos. Our approach, which leverages off-the-shelf depth estimators to enhance the standard geometric-optimization approach, results in improvements of 10% to 30% on six different performance measures, relative to the best-performing prior technique.

SfM.gif
The Prime Video structure-from-motion system at work. At top is the input video. At lower left is the video with keypoints (colored circles) added. The keypoints are tracked accurately from frame to frame, and their color indicates their depth, as estimated by a machine learning model. At lower right is the 3-D model of the keypoints (whose rotation, to demonstrate the 3-D structure, is not synchronized with the video).

In the other paper, “Robust cross-modal representation learning with progressive self-distillation,” we expand on the CLIP method of using paired images and texts found online to train a model that produces image and text representations useful for downstream tasks, such as image classification or text-based image retrieval.

Where CLIP enforces a hard alignment between Web-crawled images and their associated texts, our method is more flexible, allowing for partial correspondences between a given image and texts associated with other images. We also use a self-distillation technique, in which our model progressively creates some of its own training targets, to steadily refine its representations.

Related content
Detectors for block corruption, audio artifacts, and errors in audio-video synchronization are just three of Prime Video’s quality assurance tools.

In two different image classification settings, our method outperforms CLIP across the board, by significant margins — 30% to 90% — on some datasets. Our method also consistently outperforms its CLIP counterpart on the tasks of image-based text retrieval and text-based image retrieval.

Structure-from-motion

Structure-from-motion is the problem of determining the 3-D structure of a scene from parallax — the relative displacement of objects in the scene as the camera moves. There are robust solutions for videos with large camera movements, but they don’t work as well for feature films and TV shows, where the camera movements tend to be more restrained.

The standard approach to determining structure from motion uses geometric optimization. First, the method estimates the location of a set of 3-D points in the scene, and then, based on that estimation, it re-projects them onto a 2-D image corresponding to each camera location. The optimization procedure minimizes the distance between points in the original 2-D image and the corresponding points of the 2-D projection.

We improve on this approach by introducing depth estimates performed by off-the-shelf, pretrained models. Instead of minimizing only the difference between the original and the projected 2-D points, our approach minimizes both the reprojection error of the 2-D points and the depth measurement error, relative to the output of the depth estimation model.

Double loss.png
Our approach jointly minimizes 2-D reprojection error and depth estimate error.

Our approach begins by using a standard method to detect image keypoints — salient points in the image, usually at object corners and other edge intersections — and identify their correspondences across successive frames of video. Then, through bilinear interpolation, we use the depth map obtained from an off-the-shelf depth estimator to determine the ground-truth keypoint depths. We use the depth information not only during optimization but also during the initialization stage of the process, when we produce our initial estimates of 3-D scene structure and relative camera pose.

SfM.png
The Prime Video structure-from-motion technique identifies keypoints in input video, finds their correspondences across frames, and then estimates their depth using bilinear interpolation on a dense depth map.

We experimented with several different depth estimation models and found that the results of our approach were essentially the same with all of them. And, in all cases, our approach improved substantially on the state of the art.

Cross-modal representations

In natural-language processing, the best-performing models in recent years have been built on top of language models that learn generic linguistic representations from huge corpora of unannotated public texts. The language models can then be fine-tuned for specific tasks with minimal additional data.

CLIP (contrastive language-image pretraining) seeks to do something similar for computer vision, learning generic visual representations from images harvested from the Web and their associated texts.

Related content
The switch to WebAssembly increases stability, speed.

Like many such weakly supervised models, CLIP is trained through contrastive learning. Intuitively, for each training image, the model is fed two texts: one, the positive training example, is the text associated with the image online; the other text, the negative example, is randomly chosen. CLIP learns a data representation that pulls the image and the positive text together in the representation space and pushes the image and the negative text apart.

Although CLIP has yielded impressive results on downstream computer vision tasks, its training approach has two drawbacks. First, the web-harvested data is noisy: the text associated with an image may in fact be semantically unrelated to it. Conversely, the text randomly selected as a negative example may in fact be semantically related to the image. CLIP can thus steer the model toward erroneous associations and away from correct ones.

Our method attempts to address this problem. Rather than learn a hard alignment between image and text, we learn a soft alignment, which gives the resulting model more interpretive flexibility.

For example, in one of our experiments, both the CLIP baseline and our model were trained on datasets that included images of goldfish. When presented with an image of a stained-glass window depicting a goldfish — a type of image not included in the training data — CLIP guessed that it was a guinea pig or maybe a beer glass, while our model guessed that it was a goldfish or possibly a clown fish. That is, our model learned a representation general enough to accommodate the stylization of the stained-glass artist’s rendering style.

CV model learning.png
CLIP’s contrastive-learning procedure enforces connections between web-harvested images and their associated texts (green lines, at left) while dissociating them from other images’ texts (red lines). Our approach instead privileges associated texts but also learns softer, probabilistic alignments with other images’ texts (dotted blue lines).

Our model learns its soft alignments through a self-distillation process. First, the model learns an initial data representation through the same contrastive-loss function that CLIP uses.

Over the course of training, however, we use the model itself to make predictions about the training examples and use those predictions as additional training targets. At first, the loss function gives these self-predictions little weight, but it gradually increases the weight as training progresses.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

The idea is that, over time, the model learns more reliable correlations between training images and texts. Self-distillation reinforces those correlations, so the model isn’t encouraged to break semantic connections between images and texts that may very well be present in the data. Similarly, over time, the model learns to give less weight to spurious connections between images and the texts initially associated with them.

The great virtue of general representation models like ours and CLIP is that they can be applied to a wide variety of computer vision problems. So the accuracy improvements that our approach affords should pay dividends for Prime Video customers in a range of contexts over the next few years.

Research areas

Related content

US, WA, Seattle
The JP Economics and Decision Science Team is looking for an Intern Economist with experience in empirical economic analysis to conduct research on the impact evaluation and prediction of marketing campaigns in Amazon Japan's online retail business. The successful candidate will work closely with the team to improve the efficiency of designing marketing campaigns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics and applied microeconomics and familiarity with Stata, R, or Python are necessary. Experience with SQL would be a plus, but not required. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will work in a team of economists, data scientists, and engineers and in collaboration with product and finance managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities • Use regression analysis to estimate econometric models and develop forecasting solutions that can predict marketing campaign effectiveness. • Collaborate with other economists and data scientists to validate and refine the econometric models. • Work with product managers and software developers to integrate the forecasting models into the campaign management system. • Monitor the accuracy and effectiveness of the forecasting models and make adjustments as necessary. • Communicate your findings and recommendations to team members and stakeholders. A day in the life - Discussions with business partners, as well as product managers and tech leaders to understand the business problem. - Brainstorming with other scientists and economists to design the right model for the problem in hand. - Present the results and new ideas for existing or forward looking problems to leadership. - Deep dive into the data. - Modeling and creating working prototypes. - Analyze the results and review with partners. About the team We are a team of economists, data scientists, and business intelligence engineers supporting Amazon Japan's Customer Growth and Engagement (CGE) org as the one-stop data science enabler. We use analytical insights and products to empower CGE and align strategic decisions across partner teams (e.g., Operations, Delivery Experience, Pricing). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Senior Applied Scientist, with expertise in machine learning and a proven record of solving business problems through scalable ML solutions, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As a senior applied scientist, you will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - As a senior member of the science team, you will play an integral part in building Amazon's FBA management system. - Research and develop machine learning models to solve diverse business problems faced in Seller inventory management systems. - Define a long-term science vision and roadmap for the team, driven fundamentally from our customers' needs, translating those directions into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Review and audit modeling processes and results for other scientists, both junior and senior. - Advocate the right ML solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will be a technical leader in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As a senior scientist on the team, you will be involved in every aspect of the process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. The candidate will need to be entrepreneurial, wear many hats, and work in a fast-paced, high-energy, highly collaborative environment. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Applied Scientist, with expertise and experience in machine learning, to join our top-notch cross-domain FBA science team. We want to learn seller behaviors, understand seller experience, build automated LLM-based solutions to sellers, design seller policies and incentives, and develop science products and services that empower third-party sellers to grow their businesses. We also predict potentially costly defects that may occur during packing, shipping, receiving and storing the inventory. We aim to prevent such defects before occurring while we are also fulfilling customer demand as quickly and efficiently as possible, in addition to managing returns and reimbursements. To do so, we build and innovate science solutions at the intersection of machine learning, statistics, economics, operations research, and data analytics. As an applied scientist, you will design and implement ML solutions that will likely draw from a range of scientific areas such as supervised and unsupervised learning, recommendation systems, statistical learning, LLMs, and reinforcement learning. This role has high visibility to senior Amazon business leaders and involves working with other senior and principal scientists, and partnering with engineering and product teams to integrate scientific work into production systems. Key job responsibilities - Research and develop machine learning models to solve diverse FBA business problems. - Translate business requirements/problems into specific plans for research and applied scientists, as well as engineering and product teams. - Drive and execute machine learning projects/products end-to-end: from ideation, analysis, prototyping, development, metrics, and monitoring. - Work closely with teams of scientists, product managers, program managers, software engineers to drive production model implementations. - Build scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Advocate technical solutions to business stakeholders, engineering teams, as well as executive level decision makers A day in the life In this role, you will work in machine learning with significant scope, impact, and high visibility. Your solutions may lead to billions of dollars impact on either the topline or the bottom line of Amazon third-party seller business. As an applied scientist, you will be involved in every aspect of the scientific development process - from idea generation, business analysis and scientific research, through to development and deployment of advanced models - giving you a real sense of ownership. From day one, you will be working with experienced scientists, engineers, and designers who love what they do. You are expected to make decisions about technology, models and methodology choices. You will strive for simplicity, and demonstrate judgment backed by mathematical proof. You will also collaborate with the broader decision and research science community in Amazon to broaden the horizon of your work and mentor engineers and scientists. The successful candidate will have the strong expertise in applying machine learning models in an applied environment and is looking for her/his next opportunity to innovate, build, deliver, and impress. We are seeking someone who wants to lead projects that require innovative thinking and deep technical problem-solving skills to create production-ready machine learning solutions. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Outbound Communications own the worldwide charter for delighting our customers with timely, relevant notifications (email, mobile, SMS and other channels) to drive awareness and discovery of Amazon’s products and services. We meet customers at their channel of preference with the most relevant content at the right time and frequency. We directly create and operate marketing campaigns, and we have also enabled select partner teams to build programs by reusing and extending our infrastructure. We optimize for customers to receive the most relevant and engaging content across all of Amazon worldwide, and apply the appropriate guardrails to ensure a consistent and high-quality CX. Outbound Communications seek a talented Applied Scientist to join our team to develop the next generation of automated and personalized marketing programs to help Amazon customers in their shopping journeys worldwide. Come join us in our mission today! Key job responsibilities As an Applied Scientist on the team, you will lead the roadmap and strategy for applying science to solve customer problems in the automated marketing domain. This is an opportunity to come in on Day 0 and lead the science strategy of one of the most interesting problem spaces at Amazon - understanding the Amazon customer to build deeply personalized and adaptive messaging experiences. You will be part of a multidisciplinary team and play an active role in translating business and functional requirements into concrete deliverables. You will work closely with product management and the software development team to put solutions into production. You will apply your skills in areas such as deep learning and reinforcement learning while building scalable industrial systems. You will have a unique opportunity to produce and deliver models that help build best-in-class customer experiences and build systems that allow us to deploy these models to production with low latency and high throughput. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (Gen AI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, London
Economic Decision Science is a central science team working across a variety of topics in the EU Stores business and beyond. We work closely EU business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with EU- and US-based interdisciplinary teams. We are looking for a Senior Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. If you have an entrepreneurial spirit, you know how to deliver results fast, and you have a deeply quantitative, highly innovative approach to solving problems, and long for the opportunity to build pioneering solutions to challenging problems, we want to talk to you. Key job responsibilities - Provide data-driven guidance and recommendations on strategic questions facing the EU Retail leadership - Scope, design and implement version-zero (V0) models and experiments to kickstart new initiatives, thinking, and drive system-level changes across Amazon - Build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challenges - Influence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change We are open to hiring candidates to work out of one of the following locations: London, GBR
US, WA, Seattle
We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Amazon is looking for a passionate, talented, and inventive Applied Scientist with background in Natural Language Processing (NLP), Deep Learning, Generative AI (GenAI) to help build industry-leading technology in contact center. The ideal candidate should have a robust foundation in NLP and machine learning and a keen interest in advancing the field. The ideal candidate would also enjoy operating in dynamic environments, have the self-motivation to take on challenging problems to deliver big customer impact, and move fast to ship solutions and innovate along the development process. As part of our Transcribe science team in Amazon AWS AI, you will have the opportunity to build the next generation call center analytic solutions. You will work along side a supportive and collaborative team with a healthy mix of scientists, software engineers and language engineers to research and develop state-of-the-art technology for natural language processing. A day in the life AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
US, WA, Seattle
The Automated Reasoning Group in AWS Platform is looking for an Applied Scientist with experience in building scalable solver solutions that delight customers. You will be part of a world-class team building the next generation of automated reasoning tools and services. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. See https://aws.amazon.com/security/provable-security/ As an Applied Scientist in AWS Platform, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: - Define and implement new solver applications that are scalable and efficient approaches to difficult problems - Apply software engineering best practices to ensure a high standard of quality for all team deliverables - Work in an agile, startup-like development environment, where you are always working on the most important stuff - Deliver high-quality scientific artifacts - Work with the team to define new interfaces that lower the barrier of adoption for automated reasoning solvers - Work with the team to help drive business decisions The AWS Platform is the glue that holds the AWS ecosystem together. From identity features such as access management and sign on, cryptography, console, builder & developer tools, to projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Inclusion and Diversity. Our team is diverse! We drive towards an inclusive culture and work environment. We are intentional about attracting, developing, and retaining amazing talent from diverse backgrounds. Team members are active in Amazon’s 10+ affinity groups, sometimes known as employee resource groups, which bring employees together across businesses and locations around the world. These range from groups such as the Black Employee Network, Latinos at Amazon, Indigenous at Amazon, Families at Amazon, Amazon Women and Engineering, LGBTQ+, Warriors at Amazon (Military), Amazon People With Disabilities, and more. Key job responsibilities Work closely with internal and external users on defining and extending application domains. Tune solver performance for application-specific demands. Identify new opportunities for solver deployment. About the team Solver science is a talented team of scientists from around the world. Expertise areas include solver theory, performance, implementation, and applications. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Portland, OR, USA | Seattle, WA, USA
CN, 11, Beijing
Amazon Search JP builds features powering product search on the Amazon JP shopping site and expands the innovations to world wide. As an Applied Scientist on this growing team, you will take on a key role in improving the NLP and ranking capabilities of the Amazon product search service. Our ultimate goal is to help customers find the products they are searching for, and discover new products they would be interested in. We do so by developing NLP components that cover a wide range of languages and systems. As an Applied Scientist for Search JP, you will design, implement and deliver search features on Amazon site, helping millions of customers every day to find quickly what they are looking for. You will propose innovation in NLP and IR to build ML models trained on terabytes of product and traffic data, which are evaluated using both offline metrics as well as online metrics from A/B testing. You will then integrate these models into the production search engine that serves customers, closing the loop through data, modeling, application, and customer feedback. The chosen approaches for model architecture will balance business-defined performance metrics with the needs of millisecond response times. Key job responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching, ranking and Search suggestion problems. - Analyzing data and metrics relevant to the search experiences. - Working with teams worldwide on global projects. Your benefits include: - Working on a high-impact, high-visibility product, with your work improving the experience of millions of customers - The opportunity to use (and innovate) state-of-the-art ML methods to solve real-world problems with tangible customer impact - Being part of a growing team where you can influence the team's mission, direction, and how we achieve our goals We are open to hiring candidates to work out of one of the following locations: Beijing, 11, CHN | Shanghai, 31, CHN