Calculating the differential cost of code changes

Automated-reasoning method enables the calculation of tight bounds on the use of resources — such as computation or memory — that results from code changes.

Making changes to computer code may have unintended consequences for program performance. For instance, modifying loops or changing data structures in a specific program could cause an increase in execution time or in memory or disk usage. We refer to changes in such performance measures as the differential cost of modifying the code.

The ability to reason about the cost of code changes is called differential cost analysis. Being able to perform such an analysis before deploying a new version of program code is of particular interest to Amazon, as it not only enables a better customer experience but can also reduce resource usage and carbon footprint.

Differential cost analysis measures the cost of code changes in terms of some performance metric such as execution time or memory or disk usage.

But bounding the cost of a code change is an undecidable problem, meaning there’s no algorithm guaranteed to give you an answer. Previous approaches have focused on estimating the cost of a single version of the code, or they assumed the ability to align code changes in a syntactic way.

At this year’s ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2022), we presented a paper on differential cost analysis that overcomes some of these challenges. Our approach is based on the idea of jointly computing a potential function and an anti-potential function that provide, respectively, the upper and lower bounds for changes in cost.

Related content
The switch to WebAssembly increases stability, speed.

Unlike previous approaches, our implementation can compute tight bounds on the costs of code changes between pairs of program versions collected from the literature. In particular, we are able to provide tight bounds on 14 out of 19 examples, which include both variations that have an impact on cost and variations that do not impact the cost but require complex analysis to establish as much.


The ability to reason about cost changes in code is of fundamental importance in most software applications, but particularly for Prime Video: the Prime Video app runs on a range of devices, some of them with very limited memory and processing power. As our colleague Alex Ene has described, efficiency is a key concern for Prime Video: not only do we need to provide code that runs fast, with very tight bounds on startup time, but we also need to address the memory limitations of USB-powered streaming devices.

While new architectures can help with achieving these goals, the approach we propose in this paper is finer-grained. It is a form of automated reasoning that allows us to provide feedback to developers on every code change, in a workflow similar to the one we presented in an earlier blog post.

In particular, we address the following code analysis problem: given two versions of a program, old and new, and given a cost we are interested in (e.g., run time, memory, number of threads, disk space), we want to compute a numerical bound, the threshold t, such that

costnew - costold ≤ t.

Related content
In a pilot study, an automated code checker found about 100 possible errors, 80% of which turned out to require correction.

We focus on imperative programs — the most familiar type of program, with explicit specification of every computational step — with integer variables and polynomial arithmetic. The programs may also have nondeterministic elements, meaning that the same inputs may yield different outputs.

The anti-potential function — which calculates the lower bound — captures the minimum cost to be “paid” for a program to run. If we indicate with ϕ the potential function of a program and with χ its anti-potential function, then the threshold in cost variation between an old and a new version of a program can be approximated by ϕnew - χold.

As a concrete example, consider the two versions of the program below, where lines in yellow model the cost, text in red is the code that is removed, and text in green is the code that is added. This program encodes a common join operation over two sequences, with an operator f having some cost per pair of elements.

The formulas in boxes are, respectively, the values of the anti-potential and the potential functions. For instance, the anti-potential value in the box labeled ℓ0 encodes the fact that the cost to terminate the program is at least equal to the product of the size of the two sequences. As a result, the difference between ϕnew and χold is lenB ⋅ lenA, which is the desired threshold.

Differential cost code.png

In the paper, we show that it is possible to compute both ϕ and χ by working with polynomial expressions over program variables at each program location, as shown in the example above. We represent the program versions as transition systems, a model of computation that consists of a set of program states and a set of valid transitions between states. We assume that the transition systems terminate — i.e., there’s no input that will cause them to run forever.

We fix a symbolic variable for the threshold t, and by traversing the two transition systems, we obtain a system of constraints that can be solved to obtain concrete values for the threshold and for the potential functions.

Constraint satisfaction

A key aspect of our approach is obtaining a simultaneous system of constraints for both the potential function of the new program version and the anti-potential function of the old program.

Related content
Meet Amazon Science’s newest research area.

Unfortunately, the resulting system of constraints is hard to solve, as it involves universal quantifiers and polynomial constraints over variables. We solve it by employing the results of Handelman’s theorem to convert these constraints into a system of purely existentially quantified linear constraints. That is, we convert constraints of the form “for all X’s, P(X)” (a universal quantifier) to constraints of the form “there exist X’s such that Q(X)” (an existential quantifier), where Q is linear, meaning its variables are not squared, cubed, etc.

Such systems of constraints can be solved efficiently via an off-the-shelf linear-programming solver. This constraint representation has the additional benefit of enabling either the verification of a symbolic threshold or the optimization of a concrete one, which results in a threshold t that is as tight as possible.

We have validated this approach using 19 benchmarks in C from the current literature. We convert these programs to transition systems, and for 17 of them, we are able to compute a value for the threshold. The threshold is optimal in 14 cases, and more importantly, we can provide a threshold value in less that five seconds in all cases.

Acknowledgements: Djordje Zikelic, Pauline Bolignano, Daniel Schoepe, Ilina Stoilkovska.

Research areas

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.