Rohit Prasad, vice president and head scientist for Alexa AI, demonstrates interactive teaching by customers, a new Alexa capability announced last fall.

Alexa: The science must go on

Throughout the pandemic, the Alexa team has continued to invent on behalf of our customers.

COVID-19 has cost us precious lives and served a harsh reminder that so much more needs to be done to prepare for unforeseen events. In these difficult times, we have also seen heroic efforts — from frontline health workers working night and day to take care of patients, to rapid development of vaccines, to delivery of groceries and essential items in the safest possible way given the circumstances.

Communication features.gif
Alexa’s communications capabilities are helping families connect with their loved ones during lockdown.

Alexa has also tried to help where it can. We rapidly added skills that provide information about resources for dealing with COVID-19. We donated Echo Shows and Echo Dots to healthcare providers, patients, and assisted-living facilities around the country, and Alexa’s communications capabilities — including new calling features (e.g., group calling), and the new Care Hub — are helping providers coordinate care and families connect with their loved ones during lockdown.

It has been just over a year since our schools closed down and we started working remotely. With our homes turned into offices and classrooms, one of the challenges has been keeping our kids motivated and on-task for remote learning. Skills such as the School Schedule Blueprint are helping parents like me manage their children’s remote learning and keep them excited about the future.

Despite the challenges of the pandemic, the Alexa team has shown incredible adaptability and grit, delivering scientific results that are already making a difference for our customers and will have long-lasting effects. Over the past 12 months, we have made advances in four thematic areas, making Alexa more

  1. natural and conversational: interactions with Alexa should be as free-flowing as interacting with another person, without requiring customers to use strict linguistic constructs to communicate with Alexa’s ever-growing set of skills. 
  2. self-learning and data efficient: Alexa’s intelligence should improve without requiring manually labeled data, and it should strive to learn directly from customers. 
  3. insightful and proactive: Alexa should assist and/or provide useful information to customers by anticipating their needs.
  4. trustworthy: Alexa should have attributes like those we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

Natural and conversational 

Accurate far-field automatic speech recognition (ASR) is critical for natural interactions with Alexa. We have continued to make advances in this area, and at Interspeech 2020, we presented 12 papers, including improvements in end-to-end ASR using the recurrent-neural-network-transducer (RNN-T) architecture. ASR advances, coupled with improvements in natural-language understanding (NLU), have reduced the worldwide error rate for Alexa by more than 24% in the past 12 months.

One of Alexa Speech’s Interspeech 2020 papers, “Rescore in a flash: compact, cache efficient hashing data structures for n-gram language models”, proposes a new data structure, DashHashLM, for encoding the probabilities of word sequences in language models with a minimal memory footprint.

Customers depend on Alexa’s ability to answer single-shot requests, but to continue to provide new, delightful experiences, we are teaching Alexa to accomplish complex goals that require multiturn dialogues. In February, we announced the general release of Alexa Conversations, a capability that makes it easy for developers to build skills that engage customers in dialogues. The developer simply provides APIs (application programming interfaces), a list of entity types invoked in the skill, and a small set of sample dialogues that illustrate interactions with the skills’ capabilities. 

Alexa Conversations’ deep-learning-based dialogue manager takes care of the rest by predicting numerous alternate ways in which a customer might engage with the skill. Nearly 150 skills — such as iRobot Home and Art Museum — have now been built with Alexa Conversations, with another 100 under way, and our internal teams have launched capabilities such as Alexa Greetings (where Alexa answers the Ring doorbell on behalf of customers) and “what to read” with the same underlying capability.  

Further, to ensure that existing skills built without Alexa Conversations understand customer requests more accurately, we migrated hundreds of skills to deep neural networks (as opposed to conditional random fields). Migrated skills are seeing increases in understanding accuracy of 15% to 23% across locales. 

Alexa’s skills are ever expanding, with over 100,000 skills built worldwide by external developers. As that number has grown, discovering new skills has become a challenge. Even when customers know of a skill, they can have trouble remembering its name or how to interact with it. 

To make skills more discoverable and eliminate the need to say “Alexa, ask <skill X> to do <Y>,” we launched a deep-learning-based capability for routing utterances that do not have explicit mention of a skill’s name to relevant skills. Thousands of skills are now being discovered naturally, and in preview, they received an average of 15% more traffic. At last year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), we presented a novel method for automatically labeling training data for Alexa’s skill selection model, which is crucial to improving utterance routing accuracy as the number of skills continues to grow.  

A constituency tree featuring syntactic-distance measures.
To make the prosody of Alexa's speech more natural, the Amazon Text-to-Speech team uses constituency trees to measure the syntactic distance (orange circles) between words of an utterance, a good indicator of where phrasing breaks or prosodic resets should occur.
Credit: Glynis Condon

As we’ve been improving Alexa’s understanding capabilities, our Text-to-Speech (TTS) synthesis team has been working to increase the naturalness of Alexa’s speech. We have developed prosodic models that enable Alexa to vary patterns of intonation and inflection to fit different conversational contexts. 

This is a first milestone on the path to contextual language generation and speech synthesis. Depending on the conversational context and the speaking attributes of the customer, Alexa will vary its response — both the words chosen and the speaking style, including prosody, stress, and intonation. We also made progress in detecting tone of voice, which can be an additional signal for adapting Alexa’s responses.

Humor is a critical element of human-like conversational abilities. However, recognizing humor and generating humorous responses is one of the most challenging tasks in conversational AI. University teams participating in the Alexa Prize socialbot challenge have made significant progress in this area by identifying opportunities to use humor in conversation and selecting humorous phrases and jokes that are contextually appropriate.

One of our teams is identifying humor in product reviews by detecting incongruity between product titles and questions asked by customers. For instance, the question “Does this make espresso?” might be reasonable when applied to a high-end coffee machine, but applied to a Swiss Army knife, it’s probably a joke. 

We live in a multilingual and multicultural world, and this pandemic has made it even more important for us to connect across language barriers. In 2019, we had launched a bilingual version of Alexa — i.e., customers could address the same device in US English or Spanish without asking Alexa to switch languages on every request. However, the Spanish responses from Alexa were in a different voice than the English responses.  

By leveraging advances in neural text-to-speech (much the way we had used multilingual learning techniques to improve language understanding), we taught the original Alexa voice — which was based on English-only recordings — to speak perfectly accented U.S. Spanish. 

To further break down language barriers, in December we launched two-way language translation, which enables Alexa to act as an interpreter for customers speaking different languages. Alexa can now translate on the fly between English and six other languages on the same device.

In September 2020, I had the privilege of demonstrating natural turn-taking (NTT), a new capability that has the potential to make Alexa even more useful and delightful for our customers. With NTT, Alexa uses visual cues, in combination with acoustic and linguistic information, to determine whether a customer is addressing Alexa or other people in the household — even when there is no wake word. Our teams are working hard on bringing NTT to our customers later this year so that Alexa can participate in conversations just like a family member or a friend.  

Self-learning and data-efficient 

In AI, one definition of generalization is the ability to robustly handle novel situations and learn from them with minimal human supervision. Two years back, we introduced the ability for Alexa to automatically correct errors in its understanding without requiring any manual labeling. This self-learning system uses implicit feedback (e.g., when a customer interrupts a response to rephrase a request) to automatically revise Alexa’s handling of requests that fail. This learning method is automatically addressing 15% of defects, as quickly as a few hours after detection; with supervised learning, these defects would have taken weeks to address. 

Diagram depicting example of paraphrase alignment
We won a best-paper award at last year's International Conference on Computational Linguistics for a self-learning system that finds the best mapping from a successful request to an unsuccessful one, then transfers the training labels automatically.
Credit: Glynis Condon

At December 2020’s International Conference on Computational Linguistics, our scientists won a best-paper award for a complementary approach to self-learning. Where the earlier system overwrites the outputs of Alexa’s NLU models, the newer system uses implicit feedback to create automatically labeled training examples for those models. This approach is particularly promising for the long tail of unusually phrased requests, and it can be used in conjunction with the existing self-learning system.

In parallel, we have been inventing methods that enable Alexa to add new capabilities, intents, and concepts with as little manually labeled data as possible — often by generalizing from one task to another. For example, in a paper at last year’s ACL Workshop on NLP for Conversational AI, we demonstrated the value of transfer learning from reading comprehension to other natural-language-processing tasks, resulting in the best published results on few-shot learning for dialogue state tracking in low-data regimes.

Similarly, at this year’s Spoken Language Technology conference, we showed how to combine two existing approaches to few-shot learning — prototypical networks and data augmentation — to quickly and accurately learn new intents.

Human-like conversational abilities require common sense — something that is still elusive for conversational-AI services, despite the massive progress due to deep learning. We received the best-paper award at the Empirical Methods in Natural Language Processing (EMNLP) 2020 Workshop on Deep Learning Inside Out (DeeLIO) for our work on infusing commonsense knowledge graphs explicitly and implicitly into large pre-trained language models to give machines greater social intelligence. We will continue to build on such techniques to make interactions with Alexa more intuitive for our customers, without requiring a large quantity of annotated data. 

In December 2020, we launched a new feature that allows customers to teach Alexa new concepts. For instance, if a customer says, “Alexa, set the living room light to study mode”, Alexa might now respond, “I don't know what study mode is. Can you teach me?” Alexa extracts a definition from the customer’s answer, and when the customer later makes the same request — or a similar request — Alexa responds with the learned action. 

Alexa uses multiple deep-learning-based parsers to enable such explicit teaching. First, Alexa detects spans in requests that it has trouble understanding. Next, it engages in a clarification dialogue to learn the new concept. Thanks to this novel capability, customers are able to customize Alexa for their needs, and Alexa is learning thousands of new concepts in the smart-home domain every day, without any manual labeling. We will continue to build on this success and develop more self-learning techniques to make Alexa more useful and personal for our customers.

Insightful and proactive

Alexa-enabled ambient devices have revolutionized daily convenience, enabling us to get what we need simply by asking for it. However, the utility of these devices and endpoints does not need to be limited to customer-initiated requests. Instead, Alexa should anticipate customer needs and seamlessly assist in meeting those needs. Smart huncheslocation-based reminders, and discovery of routines are a few ways in which Alexa is already helping customers. 

Illustration of Alexa inferring a customer asking about weather at the beach may be planning a beach trip.
In this interaction, Alexa infers that a customer who asks about the weather at the beach may be interested in other information that could be useful for planning a beach trip.
credit: Glynis Condon

Another way for Alexa to be more useful to our customers is to predict customers’ goals that span multiple disparate skills. For instance, if a customer asks, “How long does it take to steep tea?”, Alexa might answer, “Five minutes is a good place to start", then follow up by asking, "Would you like me to set a timer for five minutes?” In 2020, we launched an initial version of Alexa’s ability to anticipate and complete multi-skill goals without any explicit preprogramming.  

While this ability makes the complex seem simple, underneath, it depends on multiple deep-learning models. A “trigger model” decides whether to predict the customer’s goal at all, and if it decides it should, it suggests a skill to handle the predicted goal. But the skills it suggests are identified by another model that relies on information-theoretic analyses of input utterances, together with subsidiary models that assess features such as whether the customer was trying to rephrase a prior command, or whether the direct goal and the latent goal have common entities or values.  


We have made significant advances in areas that are key to making Alexa more trusted by customers. In the field of privacy-preserving machine learning, for instance, we have been exploring differential privacy, a theoretical framework for evaluating the privacy protections offered by systems that generate aggregate statistics from individuals’ data. 

At the EMNLP 2020 Workshop on Privacy in Natural Language Processing, we presented a paper that proposes a new way to offer metric-differential-privacy assurances by adding so-called elliptical noise to training data for machine learning systems, and at this year’s Conference of the European Chapter of the Association for Computational Linguistics, we’ll present a technique for transforming texts that preserves their semantic content but removes potentially identifying information. Both methods significantly improve on the privacy protections afforded by older approaches while leaving the performance of the resulting systems unchanged.

Elliptical vs. spherical noise.png
A new approach to protecting privacy in machine learning systems that uses elliptical noise (right) rather than the conventional spherical noise (left) to perturb training data significantly improves privacy protections while leaving the performance of the resulting systems unchanged.

We have also made Alexa’s answers to information-centric questions more trustworthy by expanding our knowledge graph and improving our neural semantic parsing and web-based information retrieval. If, however, the sources of information used to produce a knowledge graph encode harmful social biases — even as a matter of historical accident — the knowledge graph may as well. In a pair of papers presented last year, our scientists devised techniques for both identifying and remediating instances of bias in knowledge graphs, to help ensure that those biases don’t leak into Alexa’s answers to questions.

A two-dimensional representation of our method for measuring bias in knowledge graph embeddings.
A two-dimensional representation of the method for measuring bias in knowledge graph embeddings that we presented last year. In each diagram, the blue dots labeled person1 indicate the shift in an embedding as we tune its parameters. The orange arrows represent relation vectors and the orange dots the sums of those vectors and the embeddings. As we shift the gender relation toward maleness, the profession relation shifts away from nurse and closer to doctor, indicating gender bias.
Credit: Glynis Condon

Similarly, the language models that many speech recognition and natural-language-understanding applications depend on are trained on corpora of publicly available texts; if those data reflect biases, so will the resulting models. At the recent ACM Conference on Fairness, Accountability, and Transparency, Alexa AI scientists presented a new data set that can be used to test language models for bias and a new metric for quantitatively evaluating the test results.

Still, we recognize that a lot more needs to be done in AI in the areas of fairness and ethics, and to that end, partnership with universities and other dedicated research organizations can be a force multiplier. As a case in point, our collaboration with the National Science Foundation to accelerate research on fairness in AI recently entered its second year, with a new round of grant recipients named in February 2021.

And in January 2021, we announced the creation of the Center for Secure and Trusted Machine Learning, a collaboration with the University of Southern California that will support USC and Amazon researchers in the development of novel approaches to privacy-preserving ML solutions

Strengthening the research community

I am particularly proud that, despite the effort required to bring all these advances to fruition, our scientists have remained actively engaged with the broader research community in many other areas. To choose just a few examples:

  • In August, we announced the winners of the third instance of the Alexa Prize Grand Challenge to develop conversational-AI systems, or socialbots, and in September, we opened registration for the fourth instance. Earlier this month, we announced another track of research for Alexa Prize called the TaskBot Challenge, in which university teams will compete to develop multimodal agents that assist customers in completing tasks requiring multiple steps and decisions.
  • In September, we announced the creation of the Columbia Center of Artificial Intelligence Technology, a collaboration with Columbia Engineering that will be a hub of research, education, and outreach programs.
  • In October, we launched the DialoGLUE challenge, together with a set of benchmark models, to encourage research on conversational generalizability, or the ability of dialogue agents trained on one task to adapt easily to new tasks.

Come work with us

Amazon is looking for data scientists, research scientists, applied scientists, interns, and more. Check out our careers page to find all of the latest job listings around the world.

We are grateful for the amazing work of our fellow researchers in the medical, pharmaceutical, and biotech communities who have developed COVID-19 vaccines in record time.

Thanks to their scientific contributions, we now have the strong belief that we will prevail against this pandemic. 

I am looking forward to the end of this pandemic and the chance to work even more closely with the Alexa teams and the broader scientific community to make further advances in conversational AI and enrich our customers’ lives. 

Research areas

Related content

US, WA, Seattle
The Artificial General Intelligent team (AGI) seeks a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP) and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. As part of this team, you will collaborate with talented peers to create scalable solutions for an innovative conversational assistant, aiming to revolutionize user experiences for millions of Alexa customers. The ideal candidate possesses a solid understanding of machine learning fundamentals and a passion for pushing boundaries in the field. They thrive in fast-paced environments, possess the drive to tackle complex challenges, and excel at swiftly delivering impactful solutions while iterating based on user feedback. Join us in our mission to redefine industry standards and provide unparalleled experiences for our customers. Key job responsibilities . You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. . You will work on core LLM technologies, including developing best-in-class modeling, prompt optimization algorithms to enable Conversation AI use cases · Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints · Create, innovate and deliver deep learning, policy-based learning, and/or machine learning based algorithms to deliver customer-impacting results · Perform model/data analysis and monitor metrics through online A/B testing · Research and implement novel machine learning and deep learning algorithms and models. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | Seattle, WA, USA
GB, London
Amazon Advertising is looking for a Senior Applied Scientist to join its brand new initiative that powers Amazon’s contextual advertising product. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. We are looking for a dynamic, innovative and accomplished Senior Applied Scientist to work on machine learning and data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you excited by the prospect of analyzing terabytes of data and leveraging state-of-the-art data science and machine learning techniques to solve real world problems? Do you like to own business problems/metrics of high ambiguity where yo get to define the path forward for success of a new initiative? As an applied scientist, you will invent ML and Artificial General Intelligence based solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both analysis and business judgment. * Collaborate with software engineering teams to integrate successful experiments into large-scale, highly complex Amazon production systems. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. About the team The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like Contextual data processing and classification, traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety and experimentation. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are open to hiring candidates to work out of one of the following locations: London, GBR
ES, M, Madrid
At Amazon, we are committed to being the Earth’s most customer-centric company. The International Technology group (InTech) owns the enhancement and delivery of Amazon’s cutting-edge engineering to all the varied customers and cultures of the world. We do this through a combination of partnerships with other Amazon technical teams and our own innovative new projects. You will be joining the Tools and Machine learning (Tamale) team. As part of InTech, Tamale strives to solve complex catalog quality problems using challenging machine learning and data analysis solutions. You will be exposed to cutting edge big data and machine learning technologies, along to all Amazon catalog technology stack, and you'll be part of a key effort to improve our customers experience by tackling and preventing defects in items in Amazon's catalog. We are looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading machine learning solutions. We strongly value your hard work and obsession to solve complex problems on behalf of Amazon customers. Key job responsibilities We look for applied scientists who possess a wide variety of skills. As the successful applicant for this role, you will with work closely with your business partners to identify opportunities for innovation. You will apply machine learning solutions to automate manual processes, to scale existing systems and to improve catalog data quality, to name just a few. You will work with business leaders, scientists, and product managers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will be part of team of 5 scientists and 13 engineers working on solving data quality issues at scale. You will be able to influence the scientific roadmap of the team, setting the standards for scientific excellence. You will be working with state-of-the-art models, including image to text, LLMs and GenAI. Your work will improve the experience of millions of daily customers using Amazon in Europe and in other regions. You will have the chance to have great customer impact and continue growing in one of the most innovative companies in the world. You will learn a huge amount - and have a lot of fun - in the process! This position will be based in Madrid, Spain We are open to hiring candidates to work out of one of the following locations: Madrid, M, ESP
US, WA, Seattle
Join us in the evolution of Amazon’s Seller business! The Selling Partner Recruitment and Success organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential by using our scaled, automated, and self-service tools. We aim to accelerate the growth of Sellers by providing tools and insights that enable them to make better and faster decisions at each step of selection management. To accomplish this, we offer intelligent insights that are both detailed and actionable, allowing Sellers to introduce new products and engage with customers effectively. We leverage extensive structured and unstructured data to generate science-based insights about their business. Furthermore, we provide personalized recommendations tailored to individual Sellers' business objectives in a user-friendly format. These insights and recommendations are integrated into our products, including Amazon Brand Analytics (ABA), Product Opportunity Explorer (OX), and Manage Your Growth (MYG). We are looking for a talented and passionate Sr. Research Scientist to lead our research endeavors and develop world-class statistical and machine learning models. The successful candidate will work closely with Product Managers (PM), User Experience (UX) designers, engineering teams, and Seller Growth Consulting teams to provide actionable insights that drive improvements in Seller businesses. Key job responsibilities You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. About the team The Seller Growth science team aims to provide data and science solutions to drive Seller growth and create better Seller experiences. We structure our science domain with three key themes and two horizontal components. We discover the opportunity space by identifying opportunities with unrealized potential, then generate actionable analytics to identify high value actions (HVAs) that unlock the opportunity space, and finally, empower Sellers with personalized Growth Plans and differentiated treatment that help them realize their potential. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Redmond
Project Kuiper is an initiative to increase global broadband access through a constellation of 3,236 satellites in low Earth orbit (LEO). Its mission is to bring fast, affordable broadband to unserved and underserved communities around the world. Project Kuiper will help close the digital divide by delivering fast, affordable broadband to a wide range of customers, including consumers, businesses, government agencies, and other organizations operating in places without reliable connectivity. As an Applied Scientist on the team you will responsible for building out and maintaining the algorithms and software services behind one of the world’s largest satellite constellations. You will be responsible for developing algorithms and applications that provide mission critical information derived from past and predicted satellite orbits to other systems and organizations rapidly, reliably, and at scale. You will be focused on contributing to the design and analysis of software systems responsible across a broad range of areas required for automated management of the Kuiper constellation. You will apply knowledge of mathematical modeling, optimization algorithms, astrodynamics, state estimation, space systems, and software engineering across a wide variety of problems to enable space operations at an unprecedented scale. You will develop features for systems to interface with internal and external teams, predict and plan communication opportunities, manage satellite orbits determination and prediction systems, develop analysis and infrastructure to monitor and support systems performance. Your work will interface with various subsystems within Project Kuiper and Amazon, as well as with external organizations, to enable engineers to safely and efficiently manage the satellite constellation. The ideal candidate will be detail oriented, strong organizational skills, able to work independently, juggle multiple tasks at once, and maintain professionalism under pressure. You should have proven knowledge of mathematical modeling and optimization along with strong software engineering skills. You should be able to independently understand customer requirements, and use data-driven approaches to identify possible solutions, select the best approach, and deliver high-quality applications. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. About the team The Constellation Management & Space Safety team maintains and builds the software services responsible for maintaining situational awareness of Kuiper satellites through their entire lifecycle in space. We coordinate with internal and external organizations to maintain the nominal operational state of the constellation. We build automated systems that use satellite telemetry and other relevant data to predict future orbits, plan maneuvers to avoid high risk close approaches with other objects in space, keep satellites in the desired locations, and exchange data with external organizations. We provide visibility information that is used to predict and establish communication channels for Kuiper satellites. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
IN, KA, Bangalore
Appstore Quality tech team builds tools, using AI and engineering techniques to provide the best quality apps to Amazon Appstore users. We are a team of highly-motivated, engaged, and responsive professionals who enable the core testing and quality infrastructure of Amazon Appstore. Come join our team and be a part of history as we deliver results for our customers. Appstore Quality team's mission is to automate all types of functional, non functional, and compliance checks on apps submitted by appstore app developers to enable north star vision of publishing apps in under 5 hours. Our team uses various ML/AI/Generative AI techniques to automatically detect violations in images and text metadata submitted by developers. We are working on ambitious project AI projects such as building LLM, auto navigate a mobile app to detect inside app issues and violations. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. This role involves working closely with Sr Data Scientist, Principal engineer, and engineering team to build ML and AL based solutions in meeting our north start vision. Key job responsibilities • Implement statistical methods to solve specific business problems utilizing code (Python, Scala, etc.). • Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. • Collaborate with program management, product management, software developers, data engineering, and business leaders to provide science support, and communicate feedback; develop, test and deploy a wide range of statistical, econometric, and machine learning models. • Build customer-facing reporting tools to provide insights and metrics which track model performance and explain variance. • Communicate verbally and in writing to business customers with various levels of technical knowledge, educating them about our solutions, as well as sharing insights and recommendations. • Earn the trust of your customers by continuing to constantly obsess over their needs and helping them solve their problems by leveraging technology • Excellent prompt engineering skillset with a deep knowledge of LLMs, embeddings, transformer models. • Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team In Appstore, “We entertain, and delight, hundreds of millions of people across devices with a vast selection of relevant apps, games, and services by making it trivially easy for developers to deliver”. Appstore team enables the customer and developer flywheel on devices by enabling developers to seamlessly launch and manage their apps/ in-app content on Amazon. It helps customers discover, buy and engage with these apps on Fire TV, Fire Tablets and mobile devices. The technologies we build on vary from device software, to high scale services, to efficient tools for developers. We are open to hiring candidates to work out of one of the following locations: Bangalore, KA, IND
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly-skilled Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and push the boundaries of efficient inference for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will play a critical role in driving the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Design and execute experiments to evaluate the performance of different decoding algorithms and models, and iterate quickly to improve results - Develop deep learning models for compression, system optimization, and inference - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Boston, MA, USA | New York, NY, USA | Sunnyvale, CA, USA
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: One Washington Park, Newark, NJ, 07102 Duties: Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3 / edX storage systems. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports into Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s in Statistics, Computer Science, Data Science, Machine Learning, Applied Math, Operations Research, Economics, or a related field plus two (2) years of experience as a Data Scientist, Data Engineer, or other occupation/position/job title involving research and data analysis. Experience may be gained concurrently and must include one (1) year in each of the following: - Building statistical models and machine learning models using large datasets from multiple resources - Working with Customer, Content, or Product data modeling and extraction - Using database technologies such as SQL or ETL - Applying specialized modelling software including Python, R, SAS, MATLAB, or Stata. Alternatively, will accept a Bachelor's and four (4) years of experience. Multiple positions. Apply online: Job Code: ADBL157. We are open to hiring candidates to work out of one of the following locations: Newark, NJ, USA
US, WA, Bellevue
Want to be part of the team whose mission is to expand Alexa to new countries, languages, devices and cultures? The Alexa International team makes it happen. Our customers are very diverse in where they live, the languages they speak to Alexa, the devices they use and the content that matters most. In turn, our problems are diverse and need innovative solutions. We are seeking a Senior Applied Science Manager who will play a key role in the next generation of AI powered Conversational Assistants. Key job responsibilities Lead and manage a team of applied and research scientists responsible for building multilingual experiences Collaborate with cross-functional teams to ensure that Amazon’s AI models are aligned with human preferences. Identify and prioritize research opportunities that have the potential to significantly impact our AI systems. Mentor and guide team members to achieve their career goals and objectives. Communicate research findings and progress to senior leadership and stakeholders. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA