Rohit Prasad, vice president and head scientist for Alexa AI, demonstrates interactive teaching by customers, a new Alexa capability announced last fall.

Alexa: The science must go on

Throughout the pandemic, the Alexa team has continued to invent on behalf of our customers.

COVID-19 has cost us precious lives and served a harsh reminder that so much more needs to be done to prepare for unforeseen events. In these difficult times, we have also seen heroic efforts — from frontline health workers working night and day to take care of patients, to rapid development of vaccines, to delivery of groceries and essential items in the safest possible way given the circumstances.

Communication features.gif
Alexa’s communications capabilities are helping families connect with their loved ones during lockdown.

Alexa has also tried to help where it can. We rapidly added skills that provide information about resources for dealing with COVID-19. We donated Echo Shows and Echo Dots to healthcare providers, patients, and assisted-living facilities around the country, and Alexa’s communications capabilities — including new calling features (e.g., group calling), and the new Care Hub — are helping providers coordinate care and families connect with their loved ones during lockdown.

It has been just over a year since our schools closed down and we started working remotely. With our homes turned into offices and classrooms, one of the challenges has been keeping our kids motivated and on-task for remote learning. Skills such as the School Schedule Blueprint are helping parents like me manage their children’s remote learning and keep them excited about the future.

Despite the challenges of the pandemic, the Alexa team has shown incredible adaptability and grit, delivering scientific results that are already making a difference for our customers and will have long-lasting effects. Over the past 12 months, we have made advances in four thematic areas, making Alexa more

  1. natural and conversational: interactions with Alexa should be as free-flowing as interacting with another person, without requiring customers to use strict linguistic constructs to communicate with Alexa’s ever-growing set of skills. 
  2. self-learning and data efficient: Alexa’s intelligence should improve without requiring manually labeled data, and it should strive to learn directly from customers. 
  3. insightful and proactive: Alexa should assist and/or provide useful information to customers by anticipating their needs.
  4. trustworthy: Alexa should have attributes like those we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

Natural and conversational 

Accurate far-field automatic speech recognition (ASR) is critical for natural interactions with Alexa. We have continued to make advances in this area, and at Interspeech 2020, we presented 12 papers, including improvements in end-to-end ASR using the recurrent-neural-network-transducer (RNN-T) architecture. ASR advances, coupled with improvements in natural-language understanding (NLU), have reduced the worldwide error rate for Alexa by more than 24% in the past 12 months.

DashHashLM.png
One of Alexa Speech’s Interspeech 2020 papers, “Rescore in a flash: compact, cache efficient hashing data structures for n-gram language models”, proposes a new data structure, DashHashLM, for encoding the probabilities of word sequences in language models with a minimal memory footprint.

Customers depend on Alexa’s ability to answer single-shot requests, but to continue to provide new, delightful experiences, we are teaching Alexa to accomplish complex goals that require multiturn dialogues. In February, we announced the general release of Alexa Conversations, a capability that makes it easy for developers to build skills that engage customers in dialogues. The developer simply provides APIs (application programming interfaces), a list of entity types invoked in the skill, and a small set of sample dialogues that illustrate interactions with the skills’ capabilities. 

Alexa Conversations’ deep-learning-based dialogue manager takes care of the rest by predicting numerous alternate ways in which a customer might engage with the skill. Nearly 150 skills — such as iRobot Home and Art Museum — have now been built with Alexa Conversations, with another 100 under way, and our internal teams have launched capabilities such as Alexa Greetings (where Alexa answers the Ring doorbell on behalf of customers) and “what to read” with the same underlying capability.  

Further, to ensure that existing skills built without Alexa Conversations understand customer requests more accurately, we migrated hundreds of skills to deep neural networks (as opposed to conditional random fields). Migrated skills are seeing increases in understanding accuracy of 15% to 23% across locales. 

Alexa’s skills are ever expanding, with over 100,000 skills built worldwide by external developers. As that number has grown, discovering new skills has become a challenge. Even when customers know of a skill, they can have trouble remembering its name or how to interact with it. 

To make skills more discoverable and eliminate the need to say “Alexa, ask <skill X> to do <Y>,” we launched a deep-learning-based capability for routing utterances that do not have explicit mention of a skill’s name to relevant skills. Thousands of skills are now being discovered naturally, and in preview, they received an average of 15% more traffic. At last year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), we presented a novel method for automatically labeling training data for Alexa’s skill selection model, which is crucial to improving utterance routing accuracy as the number of skills continues to grow.  

A constituency tree featuring syntactic-distance measures.
To make the prosody of Alexa's speech more natural, the Amazon Text-to-Speech team uses constituency trees to measure the syntactic distance (orange circles) between words of an utterance, a good indicator of where phrasing breaks or prosodic resets should occur.
Credit: Glynis Condon

As we’ve been improving Alexa’s understanding capabilities, our Text-to-Speech (TTS) synthesis team has been working to increase the naturalness of Alexa’s speech. We have developed prosodic models that enable Alexa to vary patterns of intonation and inflection to fit different conversational contexts. 

This is a first milestone on the path to contextual language generation and speech synthesis. Depending on the conversational context and the speaking attributes of the customer, Alexa will vary its response — both the words chosen and the speaking style, including prosody, stress, and intonation. We also made progress in detecting tone of voice, which can be an additional signal for adapting Alexa’s responses.

Humor is a critical element of human-like conversational abilities. However, recognizing humor and generating humorous responses is one of the most challenging tasks in conversational AI. University teams participating in the Alexa Prize socialbot challenge have made significant progress in this area by identifying opportunities to use humor in conversation and selecting humorous phrases and jokes that are contextually appropriate.

One of our teams is identifying humor in product reviews by detecting incongruity between product titles and questions asked by customers. For instance, the question “Does this make espresso?” might be reasonable when applied to a high-end coffee machine, but applied to a Swiss Army knife, it’s probably a joke. 

We live in a multilingual and multicultural world, and this pandemic has made it even more important for us to connect across language barriers. In 2019, we had launched a bilingual version of Alexa — i.e., customers could address the same device in US English or Spanish without asking Alexa to switch languages on every request. However, the Spanish responses from Alexa were in a different voice than the English responses.  

By leveraging advances in neural text-to-speech (much the way we had used multilingual learning techniques to improve language understanding), we taught the original Alexa voice — which was based on English-only recordings — to speak perfectly accented U.S. Spanish. 

To further break down language barriers, in December we launched two-way language translation, which enables Alexa to act as an interpreter for customers speaking different languages. Alexa can now translate on the fly between English and six other languages on the same device.

In September 2020, I had the privilege of demonstrating natural turn-taking (NTT), a new capability that has the potential to make Alexa even more useful and delightful for our customers. With NTT, Alexa uses visual cues, in combination with acoustic and linguistic information, to determine whether a customer is addressing Alexa or other people in the household — even when there is no wake word. Our teams are working hard on bringing NTT to our customers later this year so that Alexa can participate in conversations just like a family member or a friend.  

Self-learning and data-efficient 

In AI, one definition of generalization is the ability to robustly handle novel situations and learn from them with minimal human supervision. Two years back, we introduced the ability for Alexa to automatically correct errors in its understanding without requiring any manual labeling. This self-learning system uses implicit feedback (e.g., when a customer interrupts a response to rephrase a request) to automatically revise Alexa’s handling of requests that fail. This learning method is automatically addressing 15% of defects, as quickly as a few hours after detection; with supervised learning, these defects would have taken weeks to address. 

Diagram depicting example of paraphrase alignment
We won a best-paper award at last year's International Conference on Computational Linguistics for a self-learning system that finds the best mapping from a successful request to an unsuccessful one, then transfers the training labels automatically.
Credit: Glynis Condon

At December 2020’s International Conference on Computational Linguistics, our scientists won a best-paper award for a complementary approach to self-learning. Where the earlier system overwrites the outputs of Alexa’s NLU models, the newer system uses implicit feedback to create automatically labeled training examples for those models. This approach is particularly promising for the long tail of unusually phrased requests, and it can be used in conjunction with the existing self-learning system.

In parallel, we have been inventing methods that enable Alexa to add new capabilities, intents, and concepts with as little manually labeled data as possible — often by generalizing from one task to another. For example, in a paper at last year’s ACL Workshop on NLP for Conversational AI, we demonstrated the value of transfer learning from reading comprehension to other natural-language-processing tasks, resulting in the best published results on few-shot learning for dialogue state tracking in low-data regimes.

Similarly, at this year’s Spoken Language Technology conference, we showed how to combine two existing approaches to few-shot learning — prototypical networks and data augmentation — to quickly and accurately learn new intents.

Human-like conversational abilities require common sense — something that is still elusive for conversational-AI services, despite the massive progress due to deep learning. We received the best-paper award at the Empirical Methods in Natural Language Processing (EMNLP) 2020 Workshop on Deep Learning Inside Out (DeeLIO) for our work on infusing commonsense knowledge graphs explicitly and implicitly into large pre-trained language models to give machines greater social intelligence. We will continue to build on such techniques to make interactions with Alexa more intuitive for our customers, without requiring a large quantity of annotated data. 

In December 2020, we launched a new feature that allows customers to teach Alexa new concepts. For instance, if a customer says, “Alexa, set the living room light to study mode”, Alexa might now respond, “I don't know what study mode is. Can you teach me?” Alexa extracts a definition from the customer’s answer, and when the customer later makes the same request — or a similar request — Alexa responds with the learned action. 

Alexa uses multiple deep-learning-based parsers to enable such explicit teaching. First, Alexa detects spans in requests that it has trouble understanding. Next, it engages in a clarification dialogue to learn the new concept. Thanks to this novel capability, customers are able to customize Alexa for their needs, and Alexa is learning thousands of new concepts in the smart-home domain every day, without any manual labeling. We will continue to build on this success and develop more self-learning techniques to make Alexa more useful and personal for our customers.

Insightful and proactive

Alexa-enabled ambient devices have revolutionized daily convenience, enabling us to get what we need simply by asking for it. However, the utility of these devices and endpoints does not need to be limited to customer-initiated requests. Instead, Alexa should anticipate customer needs and seamlessly assist in meeting those needs. Smart huncheslocation-based reminders, and discovery of routines are a few ways in which Alexa is already helping customers. 

Illustration of Alexa inferring a customer asking about weather at the beach may be planning a beach trip.
In this interaction, Alexa infers that a customer who asks about the weather at the beach may be interested in other information that could be useful for planning a beach trip.
credit: Glynis Condon

Another way for Alexa to be more useful to our customers is to predict customers’ goals that span multiple disparate skills. For instance, if a customer asks, “How long does it take to steep tea?”, Alexa might answer, “Five minutes is a good place to start", then follow up by asking, "Would you like me to set a timer for five minutes?” In 2020, we launched an initial version of Alexa’s ability to anticipate and complete multi-skill goals without any explicit preprogramming.  

While this ability makes the complex seem simple, underneath, it depends on multiple deep-learning models. A “trigger model” decides whether to predict the customer’s goal at all, and if it decides it should, it suggests a skill to handle the predicted goal. But the skills it suggests are identified by another model that relies on information-theoretic analyses of input utterances, together with subsidiary models that assess features such as whether the customer was trying to rephrase a prior command, or whether the direct goal and the latent goal have common entities or values.  

Trustworthy

We have made significant advances in areas that are key to making Alexa more trusted by customers. In the field of privacy-preserving machine learning, for instance, we have been exploring differential privacy, a theoretical framework for evaluating the privacy protections offered by systems that generate aggregate statistics from individuals’ data. 

At the EMNLP 2020 Workshop on Privacy in Natural Language Processing, we presented a paper that proposes a new way to offer metric-differential-privacy assurances by adding so-called elliptical noise to training data for machine learning systems, and at this year’s Conference of the European Chapter of the Association for Computational Linguistics, we’ll present a technique for transforming texts that preserves their semantic content but removes potentially identifying information. Both methods significantly improve on the privacy protections afforded by older approaches while leaving the performance of the resulting systems unchanged.

Elliptical vs. spherical noise.png
A new approach to protecting privacy in machine learning systems that uses elliptical noise (right) rather than the conventional spherical noise (left) to perturb training data significantly improves privacy protections while leaving the performance of the resulting systems unchanged.


We have also made Alexa’s answers to information-centric questions more trustworthy by expanding our knowledge graph and improving our neural semantic parsing and web-based information retrieval. If, however, the sources of information used to produce a knowledge graph encode harmful social biases — even as a matter of historical accident — the knowledge graph may as well. In a pair of papers presented last year, our scientists devised techniques for both identifying and remediating instances of bias in knowledge graphs, to help ensure that those biases don’t leak into Alexa’s answers to questions.

A two-dimensional representation of our method for measuring bias in knowledge graph embeddings.
A two-dimensional representation of the method for measuring bias in knowledge graph embeddings that we presented last year. In each diagram, the blue dots labeled person1 indicate the shift in an embedding as we tune its parameters. The orange arrows represent relation vectors and the orange dots the sums of those vectors and the embeddings. As we shift the gender relation toward maleness, the profession relation shifts away from nurse and closer to doctor, indicating gender bias.
Credit: Glynis Condon

Similarly, the language models that many speech recognition and natural-language-understanding applications depend on are trained on corpora of publicly available texts; if those data reflect biases, so will the resulting models. At the recent ACM Conference on Fairness, Accountability, and Transparency, Alexa AI scientists presented a new data set that can be used to test language models for bias and a new metric for quantitatively evaluating the test results.

Still, we recognize that a lot more needs to be done in AI in the areas of fairness and ethics, and to that end, partnership with universities and other dedicated research organizations can be a force multiplier. As a case in point, our collaboration with the National Science Foundation to accelerate research on fairness in AI recently entered its second year, with a new round of grant recipients named in February 2021.

And in January 2021, we announced the creation of the Center for Secure and Trusted Machine Learning, a collaboration with the University of Southern California that will support USC and Amazon researchers in the development of novel approaches to privacy-preserving ML solutions

Strengthening the research community

I am particularly proud that, despite the effort required to bring all these advances to fruition, our scientists have remained actively engaged with the broader research community in many other areas. To choose just a few examples:

  • In August, we announced the winners of the third instance of the Alexa Prize Grand Challenge to develop conversational-AI systems, or socialbots, and in September, we opened registration for the fourth instance. Earlier this month, we announced another track of research for Alexa Prize called the TaskBot Challenge, in which university teams will compete to develop multimodal agents that assist customers in completing tasks requiring multiple steps and decisions.
  • In September, we announced the creation of the Columbia Center of Artificial Intelligence Technology, a collaboration with Columbia Engineering that will be a hub of research, education, and outreach programs.
  • In October, we launched the DialoGLUE challenge, together with a set of benchmark models, to encourage research on conversational generalizability, or the ability of dialogue agents trained on one task to adapt easily to new tasks.

Come work with us

Amazon is looking for data scientists, research scientists, applied scientists, interns, and more. Check out our careers page to find all of the latest job listings around the world.

We are grateful for the amazing work of our fellow researchers in the medical, pharmaceutical, and biotech communities who have developed COVID-19 vaccines in record time.

Thanks to their scientific contributions, we now have the strong belief that we will prevail against this pandemic. 

I am looking forward to the end of this pandemic and the chance to work even more closely with the Alexa teams and the broader scientific community to make further advances in conversational AI and enrich our customers’ lives. 

Research areas

Related content

US, WA, Seattle
By applying to this position, your application will be considered for all locations we hire for in the United States. Are you interested in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? We are looking for applied scientists capable of using a variety of domain expertise to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Our full-time opportunities are available in, but are not limited to the following domains: • Machine Learning: You will put Machine Learning theory into practice through experimentation and invention, leveraging machine learning techniques (such as random forest, Bayesian networks, ensemble learning, clustering, etc.), and implement learning systems to work on massive datasets in an effort to tackle never-before-solved problems. • Automated Reasoning: AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. Areas of work include: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. • Natural Language Processing and Speech Technologies: You will tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! • Computer Vision and Robotics: You will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for our customers. • Quantum: Quantum computing is rapidly emerging and our customers can the see the potential it has to address their challenges. One of our missions at AWS is to give customers access to the most innovative technology available and help them continuously reinvent their business. Quantum computing is a technology that holds promise to be transformational in many industries. We are adding quantum computing resources to the toolkits of every researcher and developer. If this sounds exciting to you - come build the future with us! Key job responsibilities You will have access to large datasets with billions of images and video to build large-scale systems Analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept Own the design and development of end-to-end systems Write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Web Services Work closely with AWS scientists to develop solutions and deploy them into production Work with diverse groups of people and cross-functional teams to solve complex business problems
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.
US, WA, Seattle
Join us at the cutting edge of Amazon's sustainability initiatives to work on environmental and social advancements to support Amazon's long term worldwide sustainability strategy. At Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. The Worldwide Sustainability (WWS) organization capitalizes on Amazon’s scale & speed to build a more resilient and sustainable company. We manage our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation (SSI) is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise. We use this expertise and skills to identify, develop and evaluate the science and innovations necessary for Amazon, customers and partners to meet their long-term sustainability goals and commitments. We’re seeking a Senior Principal Scientist for Sustainability and Climate AI to drive technical strategy and innovation for our long-term sustainability and climate commitments through AI & ML. You will serve as the strategic technical advisor to science, emerging tech, and climate pledge partners operating at the Director, VPs, and SVP level. You will set the next generation modeling standards for the team and tackle the most immature/complex modeling problems following the latest sustainability/climate sciences. Staying hyper current with emergent sustainability/climate science and machine learning trends, you'll be trusted to translate recommendations to leadership and be the voice of our interpretation. You will nurture a continuous delivery culture to embed informed, science-based decision-making into existing mechanisms, such as decarbonization strategies, ESG compliance, and risk management. You will also have the opportunity to collaborate with the Climate Pledge team to define strategies based on emergent science/tech trends and influence investment strategy. As a leader on this team, you'll play a key role in worldwide sustainability organizational planning, hiring, mentorship and leadership development. If you see yourself as a thought leader and innovator at the intersection of climate science and tech, we’d like to connect with you. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, NY, New York
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. We are seeking a technical leader for our Supply Science team. This team is within the Sponsored Product team, and works on complex engineering, optimization, econometric, and user-experience problems in order to deliver relevant product ads on Amazon search and detail pages world-wide. The team operates with the dual objective of enhancing the experience of Amazon shoppers and enabling the monetization of our online and mobile page properties. Our work spans ML and Data science across predictive modeling, reinforcement learning (Bandits), adaptive experimentation, causal inference, data engineering. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Applied Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Applied Scientist on this team you will: --Act as the technical leader in Machine Learning and drive full life-cycle Machine Learning projects. --Lead technical efforts within this team and across other teams. --Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. --Run A/B experiments, gather data, and perform statistical analysis. --Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. --Work closely with software engineers to assist in productionizing your ML models. --Research new machine learning approaches. --Recruit Applied Scientists to the team and act as a mentor to other scientists on the team. A day in the life The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Bellevue
The Learning & Development Science team in Amazon Logistics (AMZL) builds state-of-the-art Artificial Intelligence (AI) solutions for enhancing leadership and associate development within the organization. We develop technology and mechanisms to map the learner journeys, answer real-time questions through chat assistants, and drive the right interventions at the right time. As an Applied Scientist on the team, you will play a critical role in driving the design, research, and development of these science initiatives. The ideal candidate will lead the research on learning and development trends, and develop impactful learning journey roadmap that align with organizational goals and priorities. By parsing the information of different learning courses, they will utilize the latest advances in Gen AI technology to address the personalized questions in real-time from the leadership and associates through chat assistants. Post the learning interventions, the candidate will apply causal inference or A/B experimentation frameworks to assess the associated impact of these learning programs on associate performance. As a part of this role, this candidate will collaborate with a large team of experts in the field and move the state of learning experience research forward. They should have the ability to communicate the science insights effectively to both technical and non-technical audiences. Key job responsibilities * Apply science models to extract actionable information from learning feedback * Leverage GenAI/Large Language Model (LLM) technology for scaling and automating learning experience workflows * Design and implement metrics to evaluate the effectiveness of AI models * Present deep dives and analysis to both technical and non-technical stakeholders, ensuring clarity and understanding and influencing business partners * Perform statistical analysis and statistical tests including hypothesis testing and A/B testing * Recognize and adopt best practices in reporting and analysis: data integrity, test design, analysis, validation, and documentation
US, WA, Bellevue
Are you excited about developing cutting-edge generative AI, large language models (LLMs), and foundation models? Are you looking for opportunities to build and deploy them on real-world problems at a truly vast scale with global impact? At AFT (Amazon Fulfillment Technologies) AI, a group of around 50 scientists and engineers, we are on a mission to build a new generation of dynamic end-to-end prediction models (and agents) for our warehouses based on GenAI and LLMs. These models will be able to understand and make use of petabytes of human-centered as well as process information, and learn to perceive and act to further improve our world-class customer experience – at Amazon scale. We are looking for a Sr. Applied Scientist who will become of the research leads in a team that builds next-level end-to-end process predictions and shift simulations for all systems in a full warehouse with the help of generative AI, graph neural networks, and LLMs. Together, we will be pushing beyond the state of the art in simulation and optimization of one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will dive deep into our fulfillment network, understand complex processes, and channel your insights to build large-scale machine learning models (LLMs and Transformer-based GNNs) that will be able to understand (and, eventually, optimize) the state and future of our buildings, network, and orders. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. You will work with and in a team of applied scientists to solve cutting-edge problems going beyond the published state of the art that will drive transformative change on a truly global scale. You will identify promising research directions, define parts of our research agenda and be a mentor to members of our team and beyond. You will influence the broader Amazon science community and communicate with technical, scientific and business leaders. If you thrive in a dynamic environment and are passionate about pushing the boundaries of generative AI, LLMs, and optimization systems, we want to hear from you. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and data science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. The AFT AI team has deep expertise developing cutting edge AI solutions at scale and successfully applying them to business problems in the Amazon Fulfillment Network. These solutions typically utilize machine learning and computer vision techniques, applied to text, sequences of events, images or video from existing or new hardware. We influence each stage of innovation from inception to deployment, developing a research plan, creating and testing prototype solutions, and shepherding the production versions to launch.
US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution A day in the life ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
The Geospatial science team solves problems at the interface of ML/AI and GIS for Amazon's last mile delivery programs. We have access to Earth-scale datasets and use them to solve challenging problems that affect hundreds of thousands of transporters. We are looking for strong candidates to join the transportation science team which owns time estimation, GPS trajectory learning, and sensor fusion from phone data. You will join a team of GIS and ML domain experts and be expected to develop ML models, present research results to stakeholders, and collaborate with SDEs to implement the models in production. Key job responsibilities - Understand business problems and translate them into science problems - Develop ML models - Present research results - Write and publish papers - Write production code - Collaborate with SDEs and other scientists
IN, KA, Bengaluru
Job Description AOP(Analytics Operations and Programs) team is responsible for creating core analytics, insight generation and science capabilities for ROW Ops. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional Product Managers, Data Engineers, Data Scientists, Research Scientists, Applied Scientists and Business Intelligence Engineers using rigorous quantitative approaches to ensure high quality data/science products for our customers around the world. We are looking for an Applied Scientist to join our growing Science Team in Bangalore/Hyderabad. As an Applied Scientist, you are able to use a range of science methodologies to solve challenging business problems when the solution is unclear. You will be responsible for building ML models to solve complex business problems and test them in production environment. The scope of role includes defining the charter for the project and proposing solutions which align with org's priorities and production constraints but still create impact . You will achieve this by leveraging strong leadership and communication skills, data science skills and by acquiring domain knowledge pertaining to the delivery operations systems. You will provide ML thought leadership to technical and business leaders, and possess ability to think strategically about business, product, and technical challenges. You will also be expected to contribute to the science community by participating in science reviews and publishing in internal or external ML conferences. Our team solves a broad range of problems that can be scaled across ROW (Rest of the World including countries like India, Australia, Singapore, MENA and LATAM). Here is a glimpse of the problems that this team deals with on a regular basis: • Using live package and truck signals to adjust truck capacities in real-time • HOTW models for Last Mile Channel Allocation • Using LLMs to automate analytical processes and insight generation • Using ML to predict parameters which affect truck scheduling • Working with global science teams to predict Shipments Per Route for $MM savings • Deep Learning models to classify addresses based on various attributes Key job responsibilities 1. Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes 2. Design, develop, evaluate and deploy, innovative and highly scalable ML models 3. Work closely with other science and engineering teams to drive real-time model implementations 4. Work closely with Ops/Product partners to identify problems and propose machine learning solutions 5. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance 6. Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production 7. Leading projects and mentoring other scientists, engineers in the use of ML techniques As part of our team, candidate in this role will work in close collaboration with other applied scientists and cross functional teams on high visibility projects with direct exposure to the senior leadership team on regular basis. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include Truck Scheduling, LM capacity planning, LLM and so on.