Rohit Prasad, vice president and head scientist for Alexa AI, demonstrates interactive teaching by customers, a new Alexa capability announced last fall.

Alexa: The science must go on

Throughout the pandemic, the Alexa team has continued to invent on behalf of our customers.

COVID-19 has cost us precious lives and served a harsh reminder that so much more needs to be done to prepare for unforeseen events. In these difficult times, we have also seen heroic efforts — from frontline health workers working night and day to take care of patients, to rapid development of vaccines, to delivery of groceries and essential items in the safest possible way given the circumstances.

Communication features.gif
Alexa’s communications capabilities are helping families connect with their loved ones during lockdown.

Alexa has also tried to help where it can. We rapidly added skills that provide information about resources for dealing with COVID-19. We donated Echo Shows and Echo Dots to healthcare providers, patients, and assisted-living facilities around the country, and Alexa’s communications capabilities — including new calling features (e.g., group calling), and the new Care Hub — are helping providers coordinate care and families connect with their loved ones during lockdown.

It has been just over a year since our schools closed down and we started working remotely. With our homes turned into offices and classrooms, one of the challenges has been keeping our kids motivated and on-task for remote learning. Skills such as the School Schedule Blueprint are helping parents like me manage their children’s remote learning and keep them excited about the future.

Despite the challenges of the pandemic, the Alexa team has shown incredible adaptability and grit, delivering scientific results that are already making a difference for our customers and will have long-lasting effects. Over the past 12 months, we have made advances in four thematic areas, making Alexa more

  1. natural and conversational: interactions with Alexa should be as free-flowing as interacting with another person, without requiring customers to use strict linguistic constructs to communicate with Alexa’s ever-growing set of skills. 
  2. self-learning and data efficient: Alexa’s intelligence should improve without requiring manually labeled data, and it should strive to learn directly from customers. 
  3. insightful and proactive: Alexa should assist and/or provide useful information to customers by anticipating their needs.
  4. trustworthy: Alexa should have attributes like those we cherish in trustworthy people, such as discretion, fairness, and ethical behavior.

Natural and conversational 

Accurate far-field automatic speech recognition (ASR) is critical for natural interactions with Alexa. We have continued to make advances in this area, and at Interspeech 2020, we presented 12 papers, including improvements in end-to-end ASR using the recurrent-neural-network-transducer (RNN-T) architecture. ASR advances, coupled with improvements in natural-language understanding (NLU), have reduced the worldwide error rate for Alexa by more than 24% in the past 12 months.

DashHashLM.png
One of Alexa Speech’s Interspeech 2020 papers, “Rescore in a flash: compact, cache efficient hashing data structures for n-gram language models”, proposes a new data structure, DashHashLM, for encoding the probabilities of word sequences in language models with a minimal memory footprint.

Customers depend on Alexa’s ability to answer single-shot requests, but to continue to provide new, delightful experiences, we are teaching Alexa to accomplish complex goals that require multiturn dialogues. In February, we announced the general release of Alexa Conversations, a capability that makes it easy for developers to build skills that engage customers in dialogues. The developer simply provides APIs (application programming interfaces), a list of entity types invoked in the skill, and a small set of sample dialogues that illustrate interactions with the skills’ capabilities. 

Alexa Conversations’ deep-learning-based dialogue manager takes care of the rest by predicting numerous alternate ways in which a customer might engage with the skill. Nearly 150 skills — such as iRobot Home and Art Museum — have now been built with Alexa Conversations, with another 100 under way, and our internal teams have launched capabilities such as Alexa Greetings (where Alexa answers the Ring doorbell on behalf of customers) and “what to read” with the same underlying capability.  

Further, to ensure that existing skills built without Alexa Conversations understand customer requests more accurately, we migrated hundreds of skills to deep neural networks (as opposed to conditional random fields). Migrated skills are seeing increases in understanding accuracy of 15% to 23% across locales. 

Alexa’s skills are ever expanding, with over 100,000 skills built worldwide by external developers. As that number has grown, discovering new skills has become a challenge. Even when customers know of a skill, they can have trouble remembering its name or how to interact with it. 

To make skills more discoverable and eliminate the need to say “Alexa, ask <skill X> to do <Y>,” we launched a deep-learning-based capability for routing utterances that do not have explicit mention of a skill’s name to relevant skills. Thousands of skills are now being discovered naturally, and in preview, they received an average of 15% more traffic. At last year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), we presented a novel method for automatically labeling training data for Alexa’s skill selection model, which is crucial to improving utterance routing accuracy as the number of skills continues to grow.  

A constituency tree featuring syntactic-distance measures.
To make the prosody of Alexa's speech more natural, the Amazon Text-to-Speech team uses constituency trees to measure the syntactic distance (orange circles) between words of an utterance, a good indicator of where phrasing breaks or prosodic resets should occur.
Credit: Glynis Condon

As we’ve been improving Alexa’s understanding capabilities, our Text-to-Speech (TTS) synthesis team has been working to increase the naturalness of Alexa’s speech. We have developed prosodic models that enable Alexa to vary patterns of intonation and inflection to fit different conversational contexts. 

This is a first milestone on the path to contextual language generation and speech synthesis. Depending on the conversational context and the speaking attributes of the customer, Alexa will vary its response — both the words chosen and the speaking style, including prosody, stress, and intonation. We also made progress in detecting tone of voice, which can be an additional signal for adapting Alexa’s responses.

Humor is a critical element of human-like conversational abilities. However, recognizing humor and generating humorous responses is one of the most challenging tasks in conversational AI. University teams participating in the Alexa Prize socialbot challenge have made significant progress in this area by identifying opportunities to use humor in conversation and selecting humorous phrases and jokes that are contextually appropriate.

One of our teams is identifying humor in product reviews by detecting incongruity between product titles and questions asked by customers. For instance, the question “Does this make espresso?” might be reasonable when applied to a high-end coffee machine, but applied to a Swiss Army knife, it’s probably a joke. 

We live in a multilingual and multicultural world, and this pandemic has made it even more important for us to connect across language barriers. In 2019, we had launched a bilingual version of Alexa — i.e., customers could address the same device in US English or Spanish without asking Alexa to switch languages on every request. However, the Spanish responses from Alexa were in a different voice than the English responses.  

By leveraging advances in neural text-to-speech (much the way we had used multilingual learning techniques to improve language understanding), we taught the original Alexa voice — which was based on English-only recordings — to speak perfectly accented U.S. Spanish. 

To further break down language barriers, in December we launched two-way language translation, which enables Alexa to act as an interpreter for customers speaking different languages. Alexa can now translate on the fly between English and six other languages on the same device.

In September 2020, I had the privilege of demonstrating natural turn-taking (NTT), a new capability that has the potential to make Alexa even more useful and delightful for our customers. With NTT, Alexa uses visual cues, in combination with acoustic and linguistic information, to determine whether a customer is addressing Alexa or other people in the household — even when there is no wake word. Our teams are working hard on bringing NTT to our customers later this year so that Alexa can participate in conversations just like a family member or a friend.  

Self-learning and data-efficient 

In AI, one definition of generalization is the ability to robustly handle novel situations and learn from them with minimal human supervision. Two years back, we introduced the ability for Alexa to automatically correct errors in its understanding without requiring any manual labeling. This self-learning system uses implicit feedback (e.g., when a customer interrupts a response to rephrase a request) to automatically revise Alexa’s handling of requests that fail. This learning method is automatically addressing 15% of defects, as quickly as a few hours after detection; with supervised learning, these defects would have taken weeks to address. 

Diagram depicting example of paraphrase alignment
We won a best-paper award at last year's International Conference on Computational Linguistics for a self-learning system that finds the best mapping from a successful request to an unsuccessful one, then transfers the training labels automatically.
Credit: Glynis Condon

At December 2020’s International Conference on Computational Linguistics, our scientists won a best-paper award for a complementary approach to self-learning. Where the earlier system overwrites the outputs of Alexa’s NLU models, the newer system uses implicit feedback to create automatically labeled training examples for those models. This approach is particularly promising for the long tail of unusually phrased requests, and it can be used in conjunction with the existing self-learning system.

In parallel, we have been inventing methods that enable Alexa to add new capabilities, intents, and concepts with as little manually labeled data as possible — often by generalizing from one task to another. For example, in a paper at last year’s ACL Workshop on NLP for Conversational AI, we demonstrated the value of transfer learning from reading comprehension to other natural-language-processing tasks, resulting in the best published results on few-shot learning for dialogue state tracking in low-data regimes.

Similarly, at this year’s Spoken Language Technology conference, we showed how to combine two existing approaches to few-shot learning — prototypical networks and data augmentation — to quickly and accurately learn new intents.

Human-like conversational abilities require common sense — something that is still elusive for conversational-AI services, despite the massive progress due to deep learning. We received the best-paper award at the Empirical Methods in Natural Language Processing (EMNLP) 2020 Workshop on Deep Learning Inside Out (DeeLIO) for our work on infusing commonsense knowledge graphs explicitly and implicitly into large pre-trained language models to give machines greater social intelligence. We will continue to build on such techniques to make interactions with Alexa more intuitive for our customers, without requiring a large quantity of annotated data. 

In December 2020, we launched a new feature that allows customers to teach Alexa new concepts. For instance, if a customer says, “Alexa, set the living room light to study mode”, Alexa might now respond, “I don't know what study mode is. Can you teach me?” Alexa extracts a definition from the customer’s answer, and when the customer later makes the same request — or a similar request — Alexa responds with the learned action. 

Alexa uses multiple deep-learning-based parsers to enable such explicit teaching. First, Alexa detects spans in requests that it has trouble understanding. Next, it engages in a clarification dialogue to learn the new concept. Thanks to this novel capability, customers are able to customize Alexa for their needs, and Alexa is learning thousands of new concepts in the smart-home domain every day, without any manual labeling. We will continue to build on this success and develop more self-learning techniques to make Alexa more useful and personal for our customers.

Insightful and proactive

Alexa-enabled ambient devices have revolutionized daily convenience, enabling us to get what we need simply by asking for it. However, the utility of these devices and endpoints does not need to be limited to customer-initiated requests. Instead, Alexa should anticipate customer needs and seamlessly assist in meeting those needs. Smart huncheslocation-based reminders, and discovery of routines are a few ways in which Alexa is already helping customers. 

Illustration of Alexa inferring a customer asking about weather at the beach may be planning a beach trip.
In this interaction, Alexa infers that a customer who asks about the weather at the beach may be interested in other information that could be useful for planning a beach trip.
credit: Glynis Condon

Another way for Alexa to be more useful to our customers is to predict customers’ goals that span multiple disparate skills. For instance, if a customer asks, “How long does it take to steep tea?”, Alexa might answer, “Five minutes is a good place to start", then follow up by asking, "Would you like me to set a timer for five minutes?” In 2020, we launched an initial version of Alexa’s ability to anticipate and complete multi-skill goals without any explicit preprogramming.  

While this ability makes the complex seem simple, underneath, it depends on multiple deep-learning models. A “trigger model” decides whether to predict the customer’s goal at all, and if it decides it should, it suggests a skill to handle the predicted goal. But the skills it suggests are identified by another model that relies on information-theoretic analyses of input utterances, together with subsidiary models that assess features such as whether the customer was trying to rephrase a prior command, or whether the direct goal and the latent goal have common entities or values.  

Trustworthy

We have made significant advances in areas that are key to making Alexa more trusted by customers. In the field of privacy-preserving machine learning, for instance, we have been exploring differential privacy, a theoretical framework for evaluating the privacy protections offered by systems that generate aggregate statistics from individuals’ data. 

At the EMNLP 2020 Workshop on Privacy in Natural Language Processing, we presented a paper that proposes a new way to offer metric-differential-privacy assurances by adding so-called elliptical noise to training data for machine learning systems, and at this year’s Conference of the European Chapter of the Association for Computational Linguistics, we’ll present a technique for transforming texts that preserves their semantic content but removes potentially identifying information. Both methods significantly improve on the privacy protections afforded by older approaches while leaving the performance of the resulting systems unchanged.

Elliptical vs. spherical noise.png
A new approach to protecting privacy in machine learning systems that uses elliptical noise (right) rather than the conventional spherical noise (left) to perturb training data significantly improves privacy protections while leaving the performance of the resulting systems unchanged.


We have also made Alexa’s answers to information-centric questions more trustworthy by expanding our knowledge graph and improving our neural semantic parsing and web-based information retrieval. If, however, the sources of information used to produce a knowledge graph encode harmful social biases — even as a matter of historical accident — the knowledge graph may as well. In a pair of papers presented last year, our scientists devised techniques for both identifying and remediating instances of bias in knowledge graphs, to help ensure that those biases don’t leak into Alexa’s answers to questions.

A two-dimensional representation of our method for measuring bias in knowledge graph embeddings.
A two-dimensional representation of the method for measuring bias in knowledge graph embeddings that we presented last year. In each diagram, the blue dots labeled person1 indicate the shift in an embedding as we tune its parameters. The orange arrows represent relation vectors and the orange dots the sums of those vectors and the embeddings. As we shift the gender relation toward maleness, the profession relation shifts away from nurse and closer to doctor, indicating gender bias.
Credit: Glynis Condon

Similarly, the language models that many speech recognition and natural-language-understanding applications depend on are trained on corpora of publicly available texts; if those data reflect biases, so will the resulting models. At the recent ACM Conference on Fairness, Accountability, and Transparency, Alexa AI scientists presented a new data set that can be used to test language models for bias and a new metric for quantitatively evaluating the test results.

Still, we recognize that a lot more needs to be done in AI in the areas of fairness and ethics, and to that end, partnership with universities and other dedicated research organizations can be a force multiplier. As a case in point, our collaboration with the National Science Foundation to accelerate research on fairness in AI recently entered its second year, with a new round of grant recipients named in February 2021.

And in January 2021, we announced the creation of the Center for Secure and Trusted Machine Learning, a collaboration with the University of Southern California that will support USC and Amazon researchers in the development of novel approaches to privacy-preserving ML solutions

Strengthening the research community

I am particularly proud that, despite the effort required to bring all these advances to fruition, our scientists have remained actively engaged with the broader research community in many other areas. To choose just a few examples:

  • In August, we announced the winners of the third instance of the Alexa Prize Grand Challenge to develop conversational-AI systems, or socialbots, and in September, we opened registration for the fourth instance. Earlier this month, we announced another track of research for Alexa Prize called the TaskBot Challenge, in which university teams will compete to develop multimodal agents that assist customers in completing tasks requiring multiple steps and decisions.
  • In September, we announced the creation of the Columbia Center of Artificial Intelligence Technology, a collaboration with Columbia Engineering that will be a hub of research, education, and outreach programs.
  • In October, we launched the DialoGLUE challenge, together with a set of benchmark models, to encourage research on conversational generalizability, or the ability of dialogue agents trained on one task to adapt easily to new tasks.

Come work with us

Amazon is looking for data scientists, research scientists, applied scientists, interns, and more. Check out our careers page to find all of the latest job listings around the world.

We are grateful for the amazing work of our fellow researchers in the medical, pharmaceutical, and biotech communities who have developed COVID-19 vaccines in record time.

Thanks to their scientific contributions, we now have the strong belief that we will prevail against this pandemic. 

I am looking forward to the end of this pandemic and the chance to work even more closely with the Alexa teams and the broader scientific community to make further advances in conversational AI and enrich our customers’ lives. 

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is transforming advertising through generative AI technologies. We help millions of customers discover products and engage with brands across Amazon.com and beyond. Our team combines human creativity with artificial intelligence to reinvent the entire advertising lifecycle—from ad creation and optimization to performance analysis and customer insights. We develop responsible AI technologies that balance advertiser needs, enhance shopping experiences, and strengthen the marketplace. Our team values innovation and tackles complex challenges that push the boundaries of what's possible with AI. Join us in shaping the future of advertising. Key job responsibilities This role will redesign how ads create personalized, relevant shopping experiences with customer value at the forefront. Key responsibilities include: - Design and develop solutions using GenAI, deep learning, multi-objective optimization and/or reinforcement learning to transform ad retrieval, auctions, whole-page relevance, and shopping experiences. - Partner with scientists, engineers, and product managers to build scalable, production-ready science solutions. - Apply industry advances in GenAI, Large Language Models (LLMs), and related fields to create innovative prototypes and concepts. - Improve the team's scientific and technical capabilities by implementing algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor junior scientists and engineers to build a high-performing, collaborative team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the WW digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.