Learning new language-understanding tasks from just a few examples

New approach to few-shot learning improves on state of the art by combining prototypical networks with data augmentation.

One of the first things a voice agent like Alexa does when receiving a new instruction is to classify its intent — playing music, getting the weather, turning on a smart-home device, and the like.

Alexa adds new intents all the time, as new skills are developed or old ones extended. Often, because the new intents correspond to newly envisioned use cases, training data is sparse. In such cases, it would be nice to be able to leverage Alexa’s existing capacity for intent classification to learn new intents from just a few examples — maybe five or 10.

Machine learning from limited examples is known as few-shot learning. At this year’s Spoken Language Technology Workshop, my colleagues and I presented a new approach to few-shot learning for intent classification that combines two techniques: prototypical networks, or ProtoNets, which have been widely used in image classification; and neural data augmentation, or using a neural network to generate new, synthetic training examples from the small number available in the few-shot-learning scenario.

ProtoDA.png
In our experiments, we pretrained (top) a ProtoNet (P), whose inputs were embeddings from a sentence encoder. Then we experimented with two different placements of our synthetic-data generator (G): between the encoder and the ProtoNet (center) and between the ProtoNet and the classifier (bottom).

In experiments, we first compared our ProtoNet, without data augmentation, to a neural network that used conventional transfer learning to adapt to new tasks. According to F1 score, which factors in both false-positive and false-negative rate, the ProtoNet outperformed the baseline by about 1% in the five-shot case and 5% in the 10-shot case.

Then we added neural data augmentation to the ProtoNet and compared its performance to that of a ProtoNet in which we augmented data by the standard technique, adding noise to the real samples. Both augmented-data models outperformed the basic ProtoNet, but our model returned 8.4% fewer F1 errors in the five-shot case and 12.4% fewer in the 10-shot case.

ProtoNets

ProtoNets are used to do meta-learning, or learning how to learn. With ProtoNets, a machine learning model is trained to embed inputs, or represent them as points in a high-dimensional space. The goal of training is to learn an embedding that maximizes the distance between points representing instances of different classes and minimizes the distance between points representing instances of the same classes. In our case, the classes are different intents, but they might be different types of objects, or different types of sounds, or the like.

ProtoNets are trained in batches, such that each batch contains multiple instances of several different classes. After each batch, stochastic gradient descent adjusts the parameters of the model to optimize the distances between embeddings. 

It’s not necessary that each batch include instances of all the classes the model will see. This makes ProtoNets very flexible, in terms of both the number of classes they’re trained on and the number of instances per class. 

Doing few-shot learning with a trained ProtoNet is a matter of simply using it to embed, say, five or ten examples of each new class. Then the embeddings for each class are averaged to produce a representative embedding — or prototype — of the class as a whole. Classifying a new input involves embedding it and then determining which prototype it’s closest to.

Data augmentation

To this general procedure, we add data augmentation (DA), to enable better separation between prototypes. (Hence the name of our model: ProtoDA.) During few-shot learning, the embedded samples for each new class pass to a neural-network-based generator, which produces additional embedded samples, labeled as belonging to the same classes as the input samples.

We train the sample generator using the same loss function we use to train the ProtoNet. That is, the generator learns to generate new samples that, when combined with the real samples, maximize the separation between instances of different classes and minimize the separation between instances of the same classes.

Location, location, location

In our experiments, we positioned the sample generator at two different locations in our network (see diagram above). Before passing to the ProtoNet, textual inputs run through an encoder that performs an initial embedding. This embedding is a fixed-length representation of variable-length sentences, and it leverages bidirectional long-short-term-memory (LSTM) networks to capture contextual information about the inputs.

The output of the sentence encoder is a 768-dimensional embedding, in which spatial relationships represent semantic relationships. This passes to the ProtoNet, whose output is a 128-dimensional embedding, in which spatial relationships represent membership in different classes.

In one experiment, we positioned the sample generator between the semantic encoder and the ProtoNet, and in another, we positioned the generator between the ProtoNet and our model’s classification layer. 

We found that adding a neural sample generator to our model worked best when its inputs were the embeddings produced by the ProtoNet. That’s the model that reduced F1 errors 8.4% and 12.4% relative to the model that produced synthetic samples by adding noise.

We believe that the lower dimensionality of the ProtoNet space (128 instead of 768 features) and proximity to the training objective function (ProtoNet loss) contribute to the difference in performance.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, NY, New York
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.