The exterior building of The Art Institute of Chicago at Michigan Avenue. There are people visible walking at the avenue.
With Art Museum, a visitor can say phrases such as, "I want to see a painting," "Bring me to sculptures from India," or "Show me another one like that," to navigate among pieces at the Art Institute of Chicago.
rafalkrakow/Getty Images

Making an art collection browsable by voice

The Art Museum skill uses Alexa Conversations, an AI-driven dialogue management tool.

The venerable Art Institute of Chicago is now welcoming visitors again after being closed for much of last year due to the COVID-19 pandemic. On Amazon's Echo Show, however, the museum is always open, thanks to the Alexa skill Art Museum. Created using the Alexa Conversations dialogue management model, Art Museum allows people to browse more than 300 pieces of art from the institute's collection via voice commands.

Alexa Conversations, which today is now generally available to developers in the US, is the first deep learning-based dialogue manager available for development of voice skills. It uses artificial intelligence to help developers create natural, human-like voice exchanges, bridging the gap between experiences that could be built manually and the wide range of possible interactions that might happen organically.

With Art Museum, a visitor can say phrases such as, "I want to see a painting," "Bring me to sculptures from India," or "Show me another one like that," to navigate among pieces. At the same time, subtle ambient audio — that hushed sound of people milling around familiar to anyone who has spent time in a museum — lends a sense of the physical environment.

The skill, made possible by the Art Institute of Chicago's public API, won grand prize in the Alexa Skill Challenge for Alexa Conversations last fall. Customers can access the skill by saying, "Alexa, open Art Museum".

Watch the Art Museum skill in action

"It's an awesome experience, especially in a time when we all have to stay at home, to be able to browse through an art museum in Chicago," said Arindam Mandal, director of Dialog Services for Alexa. "This was one of the first skills that had a conversational experience for browsing through art, where you felt like you were in the museum."

An innovative way to navigate media

Art Museum developers John Gillilan and Katy Boungard initially created a prototype for the concept during a hackathon at the AWS re:Invent conference in 2018. When the Alexa Conversations challenge came up last year, they recognized the opportunity to build on the idea of exploring a catalog of cultural assets in a new way.

Based in Los Angeles, Gillilan and Boungard do consulting work with media companies to explore the creative potential of voice and more natural, conversational AI.

"Voice is often utility-focused," Gillilan said. "We both always approached voice technology with a content and media sensibility. That's what excites us about the technology."

Coding for voice can be deceptively complex. Take, for example, something as simple as ordering a pizza. Someone placing an order might submit two data points at once by asking for a "medium pizza with two toppings." They then might decide to revise that order by saying something like, "make that a large." When all is said and done, a developer might be accounting for thousands of dialogue paths to fulfill one pizza order.

Alexa Conversations reduces the amount of code a developer needs to write by using deep learning to extrapolate different phrasing variations and dialogue paths based on samples the developer provides. For Art Museum, this enables art collections that are dynamically built based on simple requests from users — whether or not they are familiar with the art.

"When designing Alexa skills without Alexa Conversations, you really have to map and plan for what a user might ask for at every turn,” Boungard said. "Alexa Conversations allows you the flexibility to capture that without creating specific dialogue flows."

A user could ask to see French paintings, for example, and then suddenly decide to switch things up and ask for paintings from Italy. The context management Alexa Conversations provided helped make that sort of transition seamless, Boungard said. The developers also used AWS Rekognition to pull additional descriptive tags for how people might visually describe art, such as water, or tree.

The Art Institute of Chicago welcomed the new skill. "We were excited to make our API available to the public, because we knew people would build things that we wouldn't have conceived of ourselves," said Nikhil Trivedi, the institute's director of engineering. "Katy and John's Alexa skill is one of many examples we've started to see—a tool that combines an exploration of our collection with the rich trove of audio content we have developed over the years."

The AI behind Alexa Conversations

Up until now, tool kits for voice have "institutionalized the knowledge of building experiences that are linear, and they make it really easy to achieve those linear paths. That's why when you deploy them, they don't work very well if customers deviate from those linear paths,” Mandal said.

Science innovations power Alexa Conversations dialogue management

Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner. Learn more.

Instead, Alexa Conversations encourages developers to work backward from the natural dialogue experience they want to create. To help with that process, Amazon has published guidelines on authoring sample dialogues, starting with creating a simple exchange and customizing from there.

"At the heart of dialogue management, which is what Alexa Conversations is all about, is looking at a sequence of utterances and interpreting what is the best intent of the user at this turn, and what action should I take?" Mandal observed.

The core of Alexa Conversations rests on a deep learning model that can interpret language without having to be trained on all possible variations of it. The model is trained through simulated human and machine dialogues, so developers don't need to bring their own training data. Instead, they provide sample dialogues, also specifying when to invoke APIs along with their required arguments, so the dialogue manager can gather the information to trigger the developer’s skill code.

Alexa Conversations can "directly go from words to predicting the APIs," Mandal said. "That’s the future of authoring spoken dialog experiences with minimal developer effort."

Gillilan and Boungard said the flexibility of Alexa Conversations encourages a whole different way of thinking about how to design and build voice interactions. As Mandal noted, many developers have gotten used to thinking about voice experiences of all types in a linear way — that will change as it becomes easier to build more natural, flexible skills.

"I've worked on stuff before that is transaction-oriented where I've had to build that scaffolding by hand," Gillilan said. "Having Alexa Conversations for those projects would have made them a lot easier."

For more information on Alexa Conversations, visit the Alexa Developer blog.

Research areas

Related content

US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
NL, Amsterdam
Ring is on a mission to keep people close to what's important. From the video doorbell to the DIY Ring Alarm system, Ring’s smart home security product line offers users affordable whole-home and neighborhood security. At Ring, we are committed to making home and neighborhood security accessible and effective for everyone – while working hard to bring communities together. Ring is an Amazon company. For more information, visit (https://ring.com/about). Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique possibility to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing efficient computer vision algorithms on resource-constrained computing platforms on edge. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. The role is open for multiple locations across Europe.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Diego
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities As a Senior Data Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MA, Boston
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an Applied Scientist, you will- - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder. Publish novel developments in internal and external papers, forums, and conferences - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
Amazon Last Mile builds global solutions that enable Amazon to attract an elastic supply of drivers, companies, and assets needed to deliver Amazon's and other shippers' volumes at the lowest cost and with the best customer delivery experience. Last Mile Science team owns the core decision models in the space of jurisdiction planning, delivery channel and modes network design, capacity planning for on the road and at delivery stations, routing inputs estimation and optimization. We also own scalable solutions to reduce risks, improve safety, enhance personalized experiences of our delivery associates and partners. Our research has direct impact on customer experience, driver and station associate experience, Delivery Service Partner (DSP)’s success and the sustainable growth of Amazon. We are looking for a passionate individual with strong machine learning and analytical skills to join its Last Mile Science team in the endeavor of designing and improving the most complex planning of delivery network in the world. As a Senior Data Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Key job responsibilities Key job responsibilities * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale and complexity. * Build Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Run A/B experiments, gather data, and perform statistical analysis. * Measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. * Research new and innovative machine learning approaches. Help coach/mentor junior scientists in the team. * Willingness to publish research at internal and external top scientific venues. Write and pursue IP submissions.
US, PA, Pittsburgh
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop systems for real-world interactions with a focus on the speech modality. You'll develop neural efficiency algorithms, acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations will directly impact customers through new AI products and services.
US, CA, Pasadena
The AWS Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in Mixed-Signal Design. Working alongside other scientists and engineers, you will design and validate hardware performing the control and readout functions for AWS quantum processors. Candidates must have a strong background in mixed-signal design at the printed circuit board (PCB) level. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development through multiple product life-cycles, from requirements generation to design validation. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the control of AWS quantum processor systems. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems, often ones not encountered before, across our hardware and software stacks. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both strict performance and cost metrics. Provide mentorship to junior team members. Research enabling technologies necessary for AWS to produce commercially viable quantum computers.
CA, BC, Vancouver
We are looking for a senior audio applied scientist with experience and expertise in speech and audio signal processing, machine learning, automatic speech recognition, and/or natural language processing to work on state-of-the-art solutions for applications including speech enhancement, voice analytics, and real-time transcription of conversational audio. Amazon Connect is a highly disruptive cloud-based contact center that enables businesses to deliver engaging, dynamic, and personal customer service experiences. Amazon Connect is the result of the ten years of development that went into building the tools Amazon uses to provide its award winning customer service at massive and launching it as a publicly available service. With Amazon Connect, you can create your own cloud-based contact center and be taking calls in minutes. Our team’s charter as part of the Amazon Connect organization is to think big, re-imagine, innovate, and deliver novel, state-of-the-art solutions to audio and video problems. We are interested in all aspects of audio, video, and media technology, and we leverage the latest machine learning and signal processing techniques to surprise and delight our customers. Our applications include real-time audio/video communications, audio/video scene analysis, anomaly detection, audio/speech/music/image/video processing, enhancement, analysis, synthesis and coding. We have the nimbleness of a small startup but, at the same time, the immense resources of AWS - the world leader in cloud computing - behind us as well. If you want to innovate on the cutting edge while having a profound and direct impact on the end customer experience, this is the team to be on! About the team AWS Applications and Higher Level Abstractions (Apps) provides horizontal and industry vertical applications for business users with the same on-demand scalability, reliability, pay-as-you-go pricing, and machine learning expertise that drive AWS services. The AWS Applications group includes services such as Amazon Connect (a cost-effective cloud contact center), our End User Computing (including Amazon Workspaces, AppStream, etc.), Marketing Tech (Amazon Pinpoint), and Autonomous Checkout and Biometric Identity Services (Just Walk Out, Amazon One) for retail, sports, travel, and other verticals. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
IN, KA, Bengaluru
The Amazon Artificial General Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment