Alexa Prize TaskBot Challenge update
University teams selected to participate in the Alexa Prize TaskBot Challenge will initially focus on two domains: cooking and home improvement. The challenge is the first in conversational AI to incorporate multimodal (voice and vision) customer experiences.
Credit: valentinrussanov / Glynis Condon

Amazon launches new Alexa Prize TaskBot Challenge

University teams will compete in building agents that can help customers complete complex tasks, like cooking and home improvement. Deadline for university team applications is April 16.

Editor's note: the TaskBot Challenge teams have been selected, you can learn more about them here.

More information on TaskBot Challenge

If you're interested in learning more about the TaskBot Challenge, visit the TaskBot FAQ page on the Alexa Prize website.

Amazon today announced that it is launching a new Alexa Prize TaskBot Challenge, in which university teams will compete to develop agents that assist customers in completing tasks requiring multiple steps and decisions. 

It is the first conversational AI challenge to incorporate multimodal (voice and vision) customer experiences.

The application period for the challenge begins on March 17, and extends to April 16, 2021.

The new challenge will be conducted in parallel with the existing Socialbot Grand Challenge 4, in which nine university teams are competing to create socialbots that can converse coherently and engagingly with humans for 20 minutes on a range of topics.

Amazon science panel discusses Alexa Prize, TaskBot challenges

At WSDM 2021, seven Amazon scientists gathered for a roundtable event where Amazon Scholar Eugene Agichtein talked about the Alexa Prize Socialbot Grand Challenge and introduced the newly announced Alexa Prize TaskBot Challenge. Watch the panel talk about the research challenges in voice services and more.

“Customers worldwide interact with Alexa billions of times each week,” said Prem Natarajan, Alexa AI vice president, Natural Understanding. “Those interactions are goal-directed, such as ‘Alexa, what’s the weather forecast for tomorrow?’ or ‘Alexa, did the Lakers win last night?’. But increasingly customers want to go beyond these exchanges, to more complex, multimodal, multi-step tasks. Just as the existing Alexa Prize Grand Challenge is focused on advancing digital assistants’ ability to conduct multi-turn, open domain conversations, this new challenge will focus on what’s required of digital assistants to competently complete multi-step tasks for customers.”

“This new Alexa Prize challenge represents a major step towards Alexa becoming the best digital assistant, by interactively assisting customers to complete everyday tasks, be it in cooking or home improvement,” said Yoelle Maarek, vice president of research and science, Alexa Shopping. “This is a hard AI challenge and we need to rally the best scientific minds if we want to be successful. I am delighted to see that our scientists and scholars at Amazon are turning once more to the academic community to jointly address it. This is a wonderful example of our customer-obsessed science approach where we push the boundaries of science to help and delight our customers together with academia.”

Eugene Agichtein and Emory University 2018 Alexa Prize team
Eugene Agichtein (far right), a computer science professor at Emory University, and an Amazon Scholar, was a faculty advisor for Emory's Alexa Prize team the first two years of the competition. Here, he's shown with the 2018 team. In his role as Amazon Scholar, Agichtein and colleagues have helped develop the new TaskBot Challenge.
Credit: Ann Watson

The goal of the new TaskBot Challenge is to help advance the science of conversational AI, but in ways that differentiate it from the existing Socialbot Challenge, says Eugene Agichtein, a computer science professor at Emory University, and an Amazon Scholar. Agichtein, who joined Amazon as a scholar in 2019, is very familiar with the Alexa Prize competition; he was the faculty advisor for Emory’s Alexa Prize team the first two years of the competition.  The team from Emory won the most recent Alexa Prize socialbot challenge.

“The goal of the socialbot challenge is ambitious and exciting from a scientific perspective,” Agichtein said. “But the focus hasn’t been on how helpful the socialbot can be in actually assisting people. We wanted to design a new challenge that was not only interesting from a science perspective, but also helps customers complete tasks, or solve problems.”

TaskBot Challenge

The idea for the new challenge emerged last year, and aligns with a goal for Alexa to create next-generation conversational AI shopping experiences by engaging customers in pre- and post-purchase dialogues. The TaskBot Challenge will run for three years, and initially teams will focus on two domains: cooking and home improvement.  The challenge incorporates multimodal customer experiences, so in addition to receiving verbal instructions, customers with Echo screen devices, such as the new Echo Show 10, could also be presented with step-by-step instructions, images, or diagrams that enhance task guidance.

For example, a customer might ask Alexa how to fix a scratch on a car. The TaskBot will then ask the customer more questions about their task, and then interactively provide step-by-step instructions and explanations for each step, or potentially adjust its plan based on customer input. 

After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help the teams improve their TaskBot.

Alexa Prize TaskBot DIY project example
In the forthcoming Alexa Prize TaskBot Challenge, a customer might ask Alexa how to fix a scratch on a car. The interaction above is an example of how a multi-turn, multi-step conversation might occur. After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help teams improve their TaskBot.
Credit: Glynis Condon

Success in the challenge will require participants to advance the state of the art in conversational AI, and address difficult science challenges related to knowledge representation and inference, commonsense and causal reasoning, and language understanding and generation, among others — requiring synthesis of multiple areas and approaches in AI.

“In developing the TaskBot Challenge, we tried to set a goal that is scientifically ambitious and novel, yet potentially achievable within a three-year time horizon,” Agichtein explained.  “For example, the participants will have to integrate into the interaction the domain knowledge from structured and unstructured sources, such as databases of recipes and ingredients, with commonsense and causal reasoning to understand if a step in a recipe is not possible. Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.”

Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.
Eugene Agichtein

Another scientific challenge will be how the participating teams guide a customer through complex, multi-step plans that may need to be revised if, for instance, the customer needs to substitute an ingredient, or doesn’t have a tool required to complete the task. 

“That’s where things get really challenging” Agichtein said. “The TaskBot must first develop a plan — baking a cake, for instance — and then lead the customer through the baking process. The TaskBots will have to understand when customers are getting into trouble, say, if they have run out of flour. The TaskBots will then have to suggest solutions to such problems and adjust the plan as necessary.”

In year one of the competition, Agichtein expects teams to focus primarily on single-session tasks, but teams have to be prepared to maintain and resume tasks over multiple sessions, perhaps extending across multiple days. 

“In year one, we won’t expect the TaskBots to successfully handle very complex tasks, especially those that span multiple sessions, but it’s a goal we’ll want teams to eventually address over the course of the challenge,” he said.

Other challenges the teams will confront is what tasks to try to help with, and what tasks are inappropriate or dangerous, and have to be declined. 

The deadline for university teams to apply for the challenge is April 16, 2021. Up to ten teams will be selected to participate in the challenge by June 11, and the competition will begin on June 14.  The year-long competition will conclude in May 2022, with winners being announced the following month.
Teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the TaskBot Toolkit, as well as other resources data, and Alexa team support. The winning team receives a $500,000 prize, and the second- and third-place teams receive prizes of $100,000 and $50,000, respectively.

Alexa Prize Socialbot Grand Challenge

The Alexa Prize first launched in 2016 as a competition for university students dedicated to advancing the field of conversational AI. Teams are challenged to design socialbots that Alexa customers can interact with via Alexa-enabled devices. The student teams’ ultimate goal is to meet the Grand Challenge: earn a composite score of 4.0 or higher (out of 5) from the judges, and have the judges find that at least two-thirds of their conversations with the socialbot in the final round of judging remain coherent and engaging for 20 minutes.

The teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the Cobot (conversational bot) toolkit and other tools, data, and Alexa team support.

In previous challenges, participating teams have improved the state of the art for open domain dialogue systems by developing improved natural language understanding (NLU) systems, neural response generation models, common sense knowledge modeling, and dialogue policies leading to smoother, and more engaging conversations. Alexa Prize also has led to innovative solutions that are now incorporated into existing customer experiences, such as an explicit content filter and neural response generator.

A team from the University of Washington won the inaugural competition. In 2018, a team from the University of California, Davis won the challenge, and the team from Emory University won last year.  Research papers are published each year by the participating teams, and by the Amazon Alexa Prize team.  The papers are accessible from the Alexa Prize website.

Nine university teams from around the globe are currently participating in Alexa Prize Socialbot Grand Challenge 4. The challenge began last November and will conclude in August 2021. The winning team receives a $500,000 prize, and the second- and third-place team receive prizes of $100,000 and $50,000, respectively. The grand challenge, a $1 million research grant, will be awarded to the winning team’s university if it attains a composite score of 4.0 or higher, on a 5-point scale, and at least two-thirds of their socialbot’s conversations with interactors last for 20 minutes.

Customers can engage with one of the existing competitions’ socialbots simply by saying, “Alexa, let’s chat".

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, MD, Annapolis Junction
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) methods. We build models for text, image, video, audio, and multi-modal use cases, using traditional or generative approaches to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position may require local travel up to 25% It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Amazon Web Services (AWS) Professional Services (ProServe) is looking for Data Scientists who like helping U.S. Federal agencies implement innovative cloud computing solutions and solve technical problems using state-of-the-art language models in the cloud. AWS ProServe engages in a wide variety of projects for customers and partners, providing collective experience from across the AWS customer base and are obsessed about strong success for the Customer. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. At AWS, we're hiring experienced data scientists with a background in NLP, generative AI, and document processing to help our customers understand, plan, and implement best practices around leveraging these technologies within their AWS cloud environments. Our consultants deliver proof-of-concept projects, reusable artifacts, reference architectures, and lead implementation projects to assist organizations in harnessing the power of their data and unlocking the potential of advanced NLP and AI capabilities. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have deep expertise in NLP/NLU, generative AI, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected be a US Citizen and obtain and maintain a security clearance at the TS/SCI with polygraph level. Upon start, the selected candidate will be sponsored for a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities In this role, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge generative AI solutions to address real-world challenges. - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Provide expertise and guidance in generative AI and document processing infrastructure, design, implementation, and optimization. - Maintain domain knowledge and expertise in generative AI, NLP, and NLU. - Architect and build large-scale solutions. - Build technical solutions that are secure, maintainable, scalable, reliable, performant, and cost-effective. - Identify and prepare metrics and reports for the internal team and for customers to delineate the value of their solution to the customer. - Identify, mitigate and communicate risks related to solution and service constraints by making technical trade-offs. - Participate in growing their team’s skills and help mentor internal and customer team members. - Provide guidance on the people, organizational, security and compliance aspects of AI/ML transformations for the customer. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Amazon's AGI Web & Knowledge Services group is seeking a passionate, talented, and inventive Applied Scientist to lead the development of industry-leading structured Information retrieval systems. As part of our cutting-edge AGI-SIR team, you will play a pivotal role in developing efficient AI solutions for Knowledge Graphs, Graph Search and Question Answering Systems. In this role, your work will focus on creating scalable and efficient AI-driven technologies that push the boundaries of information retrieval. You will work on a broad range of problems, from low-level data processing to the development of novel retrieval models, leveraging state-of-the-art machine learning methods. Key job responsibilities - Lead the development of advanced algorithms for knowledge graphs, graph search and question answering systems, guiding the team in solving complex problems and setting technical direction. - Design models that address customer needs, making informed trade-offs to balance accuracy, efficiency, and user experience. - Collaborate with engineering teams to implement successful models into scalable, reliable Amazon production systems. - Present results to technical and business audiences, ensuring clarity, statistical rigor, and relevance to business goals. - Establish and uphold high scientific and engineering standards, driving best practices across the team. - Promote a culture of experimentation and continuous learning within Amazon’s applied science community.
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech and retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations re-imagine buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes, unlocking our potential worldwide. Amazon Business Supplier Experience Science team is looking for Sr. Applied Scientist to excel at product and service pricing, selection, forecast and optimization. Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting, selection additions and operations optimization. Amazon Business is a fast growing business sector. We need leaders who can think big and drive big vision into a reality. Please come to work with us if you are result driven, think big, and want to have fun and make a history. You will build the science models and the supporting structures needed to analyze, dive deep, and innovate the pricing strategies. You will also have the opportunity to present findings to cross functional team partners to drive improvements. You will work closely with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to solve challenging problems. You need be comfortable using intellect, curiosity and technical ability to develop innovative solutions to business problems. You need learn different aspects of the business and understand how to apply science and analytics to solve high impact business problems. You will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. The ideal candidate will have leadership skills, proven ability to develop, enhance, automate, and manage science models from end to end. The ideal candidate will have data mining and modeling skills and will be comfortable facilitating idea creation and working from concept through to execution. The ideal candidate must have the ability to manage medium-scale automation and modeling projects, identify requirements and build methodology and tools that are mathematically grounded but also explainable operationally, apply technical skills allowing the models to adapt to changing attributes. Key job responsibilities • Contribute to supplier operations strategy development based on science models and data analysis • Develop models to measure long term impact of seller behaviors • Collaborate with product and engineering teams both within and outside of AB to launch selection and operations systems based on science and data. • Use optimization, statistical, machine learning and analytical techniques to create scalable solutions for business problems. • Design, development and evaluation of highly innovative models for forecast, optimization and experimentation. • Work and collaborate effectively with product managers and software engineering teams to build algorithms and models and integrate successful models and algorithms in production systems. • Contribute to Amazon's Intellectual Property through patents and internal and external publications A day in the life The scientist will develop, enhance, automate, and manage science models from end to end. The scientist will also have the opportunity to present findings to cross functional team partners to drive improvements. The scientist will work with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to build analytical and science models. The scientist will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. About the team Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting and selection additions.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Research Scientist, to lead the development of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Research Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - Drive applied science projects in machine learning end-to-end: from ideation over prototyping to launch. For example, starting from deep scientific thinking about new ways to support customers’ journeys through discovery, you analyze how customers discover, review and purchase Private Brands to innovate marketing and merchandising strategies. - Propose viable ideas to advance models and algorithms, with supporting argument, experiment, and eventually preliminary results. - Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions. - Present results, reports, and data insights to both technical and business leadership. - Constructively critique peer research and mentor junior scientists and engineers. - Innovate and contribute to Amazon’s science community and external research communities.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Bellevue
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
LU, Luxembourg
Are you interested in building state-of-the-art machine learning systems for the most complex, and fastest growing, transportation network in the world? If so, Amazon has the most exciting, and never-before-seen, challenges at this scale (including those in sustainability, e.g. how to reach net zero carbon by 2040). Amazon’s transportation systems get millions of packages to customers worldwide faster and cheaper while providing world class customer experience – from online checkout, to shipment planning, fulfillment, and delivery. Our software systems include services that use tens of thousands of signals every second to make business decisions impacting billions of dollars a year, that integrate with a network of small and large carriers worldwide, that manage business rules for millions of unique products, and that improve experience of over hundreds of millions of online shoppers. As part of this team you will focus on the development and research of machine learning solutions and algorithms for core planning systems, as well as for other applications within Amazon Transportation Services, and impact the future of the Amazon delivery network. Current research and areas of work within our team include machine learning forecast, uncertainty quantification, planning systems, model interpretability, graph neural nets, among others. We are looking for a Machine Learning Scientist with a strong academic background in the areas of machine learning, time series forecasting, and/or optimization. At Amazon, we strive to continue being the most customer-centric company on earth. To stay there and continue improving, we need exceptionally talented, bright, and driven people. If you'd like to help us build the place to find and buy anything online, and deliver in the most efficient and greenest way possible, this is your chance to make history. About the team The EU ATS Science and Technology (SnT) team owns scalable algorithms, models and systems that improve customer experience in middle-mile. We work backwards from Amazon's customers aiming to make transportation faster, cheaper, safer, more reliable and ecologically sustainable.