Alexa Prize TaskBot Challenge update
University teams selected to participate in the Alexa Prize TaskBot Challenge will initially focus on two domains: cooking and home improvement. The challenge is the first in conversational AI to incorporate multimodal (voice and vision) customer experiences.
Credit: valentinrussanov / Glynis Condon

Amazon launches new Alexa Prize TaskBot Challenge

University teams will compete in building agents that can help customers complete complex tasks, like cooking and home improvement. Deadline for university team applications is April 16.

Editor's note: the TaskBot Challenge teams have been selected, you can learn more about them here.

More information on TaskBot Challenge

If you're interested in learning more about the TaskBot Challenge, visit the TaskBot FAQ page on the Alexa Prize website.

Amazon today announced that it is launching a new Alexa Prize TaskBot Challenge, in which university teams will compete to develop agents that assist customers in completing tasks requiring multiple steps and decisions. 

It is the first conversational AI challenge to incorporate multimodal (voice and vision) customer experiences.

The application period for the challenge begins on March 17, and extends to April 16, 2021.

The new challenge will be conducted in parallel with the existing Socialbot Grand Challenge 4, in which nine university teams are competing to create socialbots that can converse coherently and engagingly with humans for 20 minutes on a range of topics.

Amazon science panel discusses Alexa Prize, TaskBot challenges

At WSDM 2021, seven Amazon scientists gathered for a roundtable event where Amazon Scholar Eugene Agichtein talked about the Alexa Prize Socialbot Grand Challenge and introduced the newly announced Alexa Prize TaskBot Challenge. Watch the panel talk about the research challenges in voice services and more.

“Customers worldwide interact with Alexa billions of times each week,” said Prem Natarajan, Alexa AI vice president, Natural Understanding. “Those interactions are goal-directed, such as ‘Alexa, what’s the weather forecast for tomorrow?’ or ‘Alexa, did the Lakers win last night?’. But increasingly customers want to go beyond these exchanges, to more complex, multimodal, multi-step tasks. Just as the existing Alexa Prize Grand Challenge is focused on advancing digital assistants’ ability to conduct multi-turn, open domain conversations, this new challenge will focus on what’s required of digital assistants to competently complete multi-step tasks for customers.”

“This new Alexa Prize challenge represents a major step towards Alexa becoming the best digital assistant, by interactively assisting customers to complete everyday tasks, be it in cooking or home improvement,” said Yoelle Maarek, vice president of research and science, Alexa Shopping. “This is a hard AI challenge and we need to rally the best scientific minds if we want to be successful. I am delighted to see that our scientists and scholars at Amazon are turning once more to the academic community to jointly address it. This is a wonderful example of our customer-obsessed science approach where we push the boundaries of science to help and delight our customers together with academia.”

Eugene Agichtein and Emory University 2018 Alexa Prize team
Eugene Agichtein (far right), a computer science professor at Emory University, and an Amazon Scholar, was a faculty advisor for Emory's Alexa Prize team the first two years of the competition. Here, he's shown with the 2018 team. In his role as Amazon Scholar, Agichtein and colleagues have helped develop the new TaskBot Challenge.
Credit: Ann Watson

The goal of the new TaskBot Challenge is to help advance the science of conversational AI, but in ways that differentiate it from the existing Socialbot Challenge, says Eugene Agichtein, a computer science professor at Emory University, and an Amazon Scholar. Agichtein, who joined Amazon as a scholar in 2019, is very familiar with the Alexa Prize competition; he was the faculty advisor for Emory’s Alexa Prize team the first two years of the competition.  The team from Emory won the most recent Alexa Prize socialbot challenge.

“The goal of the socialbot challenge is ambitious and exciting from a scientific perspective,” Agichtein said. “But the focus hasn’t been on how helpful the socialbot can be in actually assisting people. We wanted to design a new challenge that was not only interesting from a science perspective, but also helps customers complete tasks, or solve problems.”

TaskBot Challenge

The idea for the new challenge emerged last year, and aligns with a goal for Alexa to create next-generation conversational AI shopping experiences by engaging customers in pre- and post-purchase dialogues. The TaskBot Challenge will run for three years, and initially teams will focus on two domains: cooking and home improvement.  The challenge incorporates multimodal customer experiences, so in addition to receiving verbal instructions, customers with Echo screen devices, such as the new Echo Show 10, could also be presented with step-by-step instructions, images, or diagrams that enhance task guidance.

For example, a customer might ask Alexa how to fix a scratch on a car. The TaskBot will then ask the customer more questions about their task, and then interactively provide step-by-step instructions and explanations for each step, or potentially adjust its plan based on customer input. 

After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help the teams improve their TaskBot.

Alexa Prize TaskBot DIY project example
In the forthcoming Alexa Prize TaskBot Challenge, a customer might ask Alexa how to fix a scratch on a car. The interaction above is an example of how a multi-turn, multi-step conversation might occur. After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help teams improve their TaskBot.
Credit: Glynis Condon

Success in the challenge will require participants to advance the state of the art in conversational AI, and address difficult science challenges related to knowledge representation and inference, commonsense and causal reasoning, and language understanding and generation, among others — requiring synthesis of multiple areas and approaches in AI.

“In developing the TaskBot Challenge, we tried to set a goal that is scientifically ambitious and novel, yet potentially achievable within a three-year time horizon,” Agichtein explained.  “For example, the participants will have to integrate into the interaction the domain knowledge from structured and unstructured sources, such as databases of recipes and ingredients, with commonsense and causal reasoning to understand if a step in a recipe is not possible. Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.”

Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.
Eugene Agichtein

Another scientific challenge will be how the participating teams guide a customer through complex, multi-step plans that may need to be revised if, for instance, the customer needs to substitute an ingredient, or doesn’t have a tool required to complete the task. 

“That’s where things get really challenging” Agichtein said. “The TaskBot must first develop a plan — baking a cake, for instance — and then lead the customer through the baking process. The TaskBots will have to understand when customers are getting into trouble, say, if they have run out of flour. The TaskBots will then have to suggest solutions to such problems and adjust the plan as necessary.”

In year one of the competition, Agichtein expects teams to focus primarily on single-session tasks, but teams have to be prepared to maintain and resume tasks over multiple sessions, perhaps extending across multiple days. 

“In year one, we won’t expect the TaskBots to successfully handle very complex tasks, especially those that span multiple sessions, but it’s a goal we’ll want teams to eventually address over the course of the challenge,” he said.

Other challenges the teams will confront is what tasks to try to help with, and what tasks are inappropriate or dangerous, and have to be declined. 

The deadline for university teams to apply for the challenge is April 16, 2021. Up to ten teams will be selected to participate in the challenge by June 11, and the competition will begin on June 14.  The year-long competition will conclude in May 2022, with winners being announced the following month.
Teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the TaskBot Toolkit, as well as other resources data, and Alexa team support. The winning team receives a $500,000 prize, and the second- and third-place teams receive prizes of $100,000 and $50,000, respectively.

Alexa Prize Socialbot Grand Challenge

The Alexa Prize first launched in 2016 as a competition for university students dedicated to advancing the field of conversational AI. Teams are challenged to design socialbots that Alexa customers can interact with via Alexa-enabled devices. The student teams’ ultimate goal is to meet the Grand Challenge: earn a composite score of 4.0 or higher (out of 5) from the judges, and have the judges find that at least two-thirds of their conversations with the socialbot in the final round of judging remain coherent and engaging for 20 minutes.

The teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the Cobot (conversational bot) toolkit and other tools, data, and Alexa team support.

In previous challenges, participating teams have improved the state of the art for open domain dialogue systems by developing improved natural language understanding (NLU) systems, neural response generation models, common sense knowledge modeling, and dialogue policies leading to smoother, and more engaging conversations. Alexa Prize also has led to innovative solutions that are now incorporated into existing customer experiences, such as an explicit content filter and neural response generator.

A team from the University of Washington won the inaugural competition. In 2018, a team from the University of California, Davis won the challenge, and the team from Emory University won last year.  Research papers are published each year by the participating teams, and by the Amazon Alexa Prize team.  The papers are accessible from the Alexa Prize website.

Nine university teams from around the globe are currently participating in Alexa Prize Socialbot Grand Challenge 4. The challenge began last November and will conclude in August 2021. The winning team receives a $500,000 prize, and the second- and third-place team receive prizes of $100,000 and $50,000, respectively. The grand challenge, a $1 million research grant, will be awarded to the winning team’s university if it attains a composite score of 4.0 or higher, on a 5-point scale, and at least two-thirds of their socialbot’s conversations with interactors last for 20 minutes.

Customers can engage with one of the existing competitions’ socialbots simply by saying, “Alexa, let’s chat".

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
At Amazon, we're working to be the world’s most customer-centric company. Driving innovation on behalf of customers is core to our mission, and this position supports one of our largest business to deliver on this mission. As member of the Operations Insights, Planning, Analytics and Technology (IPAT) team, this position owns monthly change management, Controllership and Governance, Risk and Compliance (GRC) process for World Wide Operations IPAT team. Key job responsibilities In the midst of our rapidly expanding scope, we are actively seeking a Data Scientist who possesses strategic thinking skills and a knack for creative problem-solving. This Data Scientist will play a pivotal role in supporting hyper-growth projects. Collaborating closely with cross-functional finance and business leaders within the WW Operations organization, this role should be skilled in ML models development, Optimization models, model implementation, hypothesis testing, high quality analysis, database design, be comfortable dealing with large and complex data sets, and using visualization tools. Join us on this captivating journey in an exhilarating domain, and become a part of making history!
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.