Echo Show 10, Charcoal, UI.jpg
A a team of designers, engineers, software developers, and scientists spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday.

The intersection of design and science

How a team of designers, scientists, developers, and engineers worked together to create a truly unique device in Echo Show 10.

During the prototyping stages of the journey that brought Echo Show 10 to life, the design, engineering, and science teams behind it encountered a surprise: one of their early assumptions was proving to be wrong.

The feature that most distinguishes the current generation from its predecessors is the way the device utilizes motion to automatically face users as they move around a room and interact with Alexa. This allows users to move around in the kitchen while consulting a recipe, or to move freely when engaging in a video call, with the screen staying in view.

Naturally, or so the team thought, users would want the device to remain facing them, matching where they were at all times. “You walk from the sink to the fridge, say, while you're using the device for a recipe, the device moves with you,” David Rowell, principal UX designer said. Because no hardware existed, the team had to create a method of prototyping, so they turned to virtual reality (VR). That approach enabled Echo Show 10 teams to work together to test assumptions — including their assumption about how the screen should behave. In this case, what they experienced in VR made them change course.

Echo Show 10 animation

“We had a paradigm that we thought worked really well, but once we tested it, we quickly discovered that we don't want to be one-to-one accurate,” said David Jara, senior UX motion designer. In fact, he said, the feedback led them to a somewhat unexpected conclusion: the device should actually lag behind the user. “Even though, from a pragmatic standpoint, you would think, ‘Well, this thing is too slow. Why can't it keep up?’, once you experienced it, the slowed down version was so much more pleasant.”

This was just one instance of a class of feedback and assumption-changing research that required a team of designers, engineers, software developers, and scientists to constantly iterate and adapt. Those teams spent many months hypothesizing, experimenting, learning, iterating, and ultimately creating Echo Show 10, which was released Thursday. Amazon Science talked to some of those team members to find out how they collaborated to tackle the challenges of developing a motorized smart display and device that pairs sound localization technology and computer vision models.

From idea to iteration

“The idea came from the product team about ways we could differentiate Echo Show,” Rowell said. “The idea came up about this rotating device, but we didn't really know what we wanted to use it for, which is when design came in and started creating use cases for how we could take advantage of motion.”

The design team envisioned a device that moved with users in a way that was both smooth and provided utility.

Adding motion to Echo Show was a really big undertaking. There were a lot of challenges, including how do we make sure that the experience is natural.
Dinesh Nair, applied science manager

That presented some significant challenges for the scientists involved in the project. “Adding motion to Echo Show was a really big undertaking,” said Dinesh Nair, an applied science manager in Emerging Devices. “There were a lot of challenges, including how do we make sure that the experience is natural, and not perceived as creepy by the user.”

Not only did the team have to account for creating a motion experience that felt natural, they had to do it all on a relatively small device. "Building state-of-the-art computer vision algorithms that were processed locally on the device was the greatest challenge we faced," said Varsha Hedau, applied science manager.

The multi-faceted nature of the project also prompted the teams to test the device in a fairly new way. “When the project came along, we decided that that VR would be a great way to actually demonstrate Echo Show 10, particularly with motion,” Rowell noted. “How could it move with you? How does it frame you? How do we fine tune all the ways we want machine learning to move with the correct person?”

Behind each of those questions lay challenges for the design, science, and engineering teams. To identify and address those challenges, the far-flung teams collaborated regularly, even in the midst of a pandemic. “It was interesting because we’re spread over many different locations in the US,” Rowell said. “We had a lot of video calls and VR meant teams could very quickly iterate. There was a lot of sharing and VR was great for that.”

Clearing the hurdles

One of the first hurdles the teams had to clear was how to accurately and consistently locate a person.

“The way we initially thought about doing this was to use spatial cues from your voice to estimate where you are,” Nair said. “Using the direction given by Echo’s chosen beam, the idea was to move the device to face you, and then computer vision algorithms would kick in.”

The science behind Echo Show 10

A combination of audio and visual signals guide the device’s movement, so the screen is always in view. Learn more about the science that empowers that intelligent motion.

That approach presented dual challenges. Current Echo devices form beams in multiple directions and then choose the best beam for speech recognition. “One of the issues with beam selection is that the accuracy is plus or minus 30 degrees for our traditional Echo devices,” Nair observed. “Another is issues with interference noise and sound reflections, for example if you place the device in a corner or there is noise near the person.” The acoustic reflections were particularly vexing since they interfere with the direct sound from the person speaking, especially when the device is playing music. Traditional sound source localization algorithms are also susceptible to these problems.

The Audio Technology team addressed these challenges to determine the direction of sound by developing a new sound localization algorithm. “By breaking down sound waves into their fundamental components and training a model to detect the direct sound, we can accurately determine the direction that sound is coming from,” said Phil Hilmes, director of audio technology. That, along with other algorithm developments, led the team to deliver a sound direction algorithm that was more robust to reflections and interference from noise or music playback, even when it is louder than the person’s voice.

Rowell said, “When we originally conceived of the device, we envisioned it being placed in open space, like a kitchen island so you could use the device effectively from multiple rooms.” Customer feedback during beta testing showed this assumption ran into literal walls. “We found that people actually put the device closer to walls so the device had to work well in these positions.” In some of these more challenging positions, using only audio to find the direction is still insufficient for accurate localization and extra clues from other sensors are needed.

Echo Show 10, Charcoal, Living room.jpg
Echo Show 10 designers initially thought it would be placed in open space, like a kitchen island. Feedback during beta testing showed customers placed it closer to walls, so the teams adjusted.

The design team worked with the science teams so the device relied not just on sound, but also on computer vision. Computer vision algorithms allow the device to locate humans within its field of view, helping it improve accuracy and distinguish people from sounds reflecting off walls, or coming from other sources. The teams also developed fusion algorithms for combining computer vision and sound direction into a model that optimized the final movement.

That collaboration enabled the design team to work with the device engineers to limit the device’s rotation. “That approach prevented the device from turning and basically looking away from you or looking at the wall or never looking at you straight on,” Rowell said. “It really tuned in the algorithms and got better at working out where you were.”

The teams undertook a thorough review of every assumption made in the design phase and adapted based on actual customer interactions. That included the realization that the device’s tracking speed didn’t need to be slow so much as it needed to be intelligent.

“The biggest challenge with Echo Show 10 was to make motion work intelligently,” said Meeta Mishra, principal technical program manager for Echo Devices. “The science behind the device movement is based on fusion of various inputs like sound source, user presence, device placement, and lighting conditions, to name a few. The internal dog-fooding, coupled with the work from home situation, brought forward the real user environment for our testing and iterations. This gave us wider exposure of varied home conditions needed to formulate the right user experience that will work in typical households and also strengthened our science models to make this device a delight.”

Frame rates and bounding boxes

Responding to the user feedback about the preference for intelligent motion meant the science and design teams also had to navigate issues around detection. “Video calls often run at 24 frames a second,” Nair observed. “But a deep learning network that accurately detects where you are, those don't run as fast, they’re typically running at 10 frames per second on the device.”

That latency meant several teams had to find a way to bridge the difference between the frame rates. “We had to work with not just the design team, but also the team that worked on the framing software,” Nair said. “We had to figure out how we could give intermediate results between detections by tracking the person.”

By breaking down sound waves into their fundamental components and training a model ... we can accurately determine the direction that sound is coming from.
Phil Hilmes, director of audio technology

Hedau and her team helped deliver the answer in the form of bounding boxes and Kalman filtering, an algorithm that provides estimates of some unknown variables given the measurements observed over time. That approach allows the device to, essentially, make informed guesses about a user’s movement.

During testing, the teams also discovered that the device would need to account for the manner in which a person interacted with it. “We found that when people are on a call, there are two use cases,” Rowell observed. “They're either are very engaged with the call, where they’re close to the device and looking at the device and the other person on the other end, or they're multitasking.”

The solution was born, yet again, from collaboration. “We went through a lot of experiments to model which user experience really works the best,” Hedau said. Those experiments resulted in utilizing the device’s CV to determine the distance between a person and Echo Show 10.

“We have settings based on the distance that the customer is from the device, which is a way to roughly measure how engaged a customer is,” Rowell said. “When a person is really up close, we don't want the device to move too much because the screen just feels like it's fidgety. But if somebody is on a call and multitasking, they're moving a lot. In this instance, we want smoother transitions.”

Looking to the future

The teams behind the Echo Show 10 are, unsurprisingly, already pondering what’s next. Rowell suggested that, in the future, the Echo Show might show a bit of personality. "We can make the device more playful," Rowell said. "We could start to express a lot of personality with the hardware." [Editor’s note: Some of this is currently enabled via APIs; certain games can “take on new personality through the ability to make the device shake in concert with sound effects and on-screen animations.”]

Nair said his team will also focus on making the on-device processing even faster. “A significant portion of the overall on-device processing is CV and deep learning,” he noted. “Deep networks are always evolving, and we will keep pushing that frontier.”

“Our teams are working continuously to further push the performance of our deep learning models in corner cases such a multi-people, low lighting, fast motions, and more,” added Hedau.

Whatever route Echo Show goes next, the teams behind it already know one thing for certain: they can collaborate their way through just about anything. “With Echo Show 10, there were a lot of assumptions we had when we started, but we didn’t know which would prove true until we got there,” Jara said. “We were kind of building the plane as we were flying it.”

Related content

US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.