Alexa Prize TaskBot Challenge update
University teams selected to participate in the Alexa Prize TaskBot Challenge will initially focus on two domains: cooking and home improvement. The challenge is the first in conversational AI to incorporate multimodal (voice and vision) customer experiences.
Credit: valentinrussanov / Glynis Condon

Amazon launches new Alexa Prize TaskBot Challenge

University teams will compete in building agents that can help customers complete complex tasks, like cooking and home improvement. Deadline for university team applications is April 16.

Editor's note: the TaskBot Challenge teams have been selected, you can learn more about them here.

More information on TaskBot Challenge

If you're interested in learning more about the TaskBot Challenge, visit the TaskBot FAQ page on the Alexa Prize website.

Amazon today announced that it is launching a new Alexa Prize TaskBot Challenge, in which university teams will compete to develop agents that assist customers in completing tasks requiring multiple steps and decisions. 

It is the first conversational AI challenge to incorporate multimodal (voice and vision) customer experiences.

The application period for the challenge begins on March 17, and extends to April 16, 2021.

The new challenge will be conducted in parallel with the existing Socialbot Grand Challenge 4, in which nine university teams are competing to create socialbots that can converse coherently and engagingly with humans for 20 minutes on a range of topics.

Amazon science panel discusses Alexa Prize, TaskBot challenges

At WSDM 2021, seven Amazon scientists gathered for a roundtable event where Amazon Scholar Eugene Agichtein talked about the Alexa Prize Socialbot Grand Challenge and introduced the newly announced Alexa Prize TaskBot Challenge. Watch the panel talk about the research challenges in voice services and more.

“Customers worldwide interact with Alexa billions of times each week,” said Prem Natarajan, Alexa AI vice president, Natural Understanding. “Those interactions are goal-directed, such as ‘Alexa, what’s the weather forecast for tomorrow?’ or ‘Alexa, did the Lakers win last night?’. But increasingly customers want to go beyond these exchanges, to more complex, multimodal, multi-step tasks. Just as the existing Alexa Prize Grand Challenge is focused on advancing digital assistants’ ability to conduct multi-turn, open domain conversations, this new challenge will focus on what’s required of digital assistants to competently complete multi-step tasks for customers.”

“This new Alexa Prize challenge represents a major step towards Alexa becoming the best digital assistant, by interactively assisting customers to complete everyday tasks, be it in cooking or home improvement,” said Yoelle Maarek, vice president of research and science, Alexa Shopping. “This is a hard AI challenge and we need to rally the best scientific minds if we want to be successful. I am delighted to see that our scientists and scholars at Amazon are turning once more to the academic community to jointly address it. This is a wonderful example of our customer-obsessed science approach where we push the boundaries of science to help and delight our customers together with academia.”

Eugene Agichtein and Emory University 2018 Alexa Prize team
Eugene Agichtein (far right), a computer science professor at Emory University, and an Amazon Scholar, was a faculty advisor for Emory's Alexa Prize team the first two years of the competition. Here, he's shown with the 2018 team. In his role as Amazon Scholar, Agichtein and colleagues have helped develop the new TaskBot Challenge.
Credit: Ann Watson

The goal of the new TaskBot Challenge is to help advance the science of conversational AI, but in ways that differentiate it from the existing Socialbot Challenge, says Eugene Agichtein, a computer science professor at Emory University, and an Amazon Scholar. Agichtein, who joined Amazon as a scholar in 2019, is very familiar with the Alexa Prize competition; he was the faculty advisor for Emory’s Alexa Prize team the first two years of the competition.  The team from Emory won the most recent Alexa Prize socialbot challenge.

“The goal of the socialbot challenge is ambitious and exciting from a scientific perspective,” Agichtein said. “But the focus hasn’t been on how helpful the socialbot can be in actually assisting people. We wanted to design a new challenge that was not only interesting from a science perspective, but also helps customers complete tasks, or solve problems.”

TaskBot Challenge

The idea for the new challenge emerged last year, and aligns with a goal for Alexa to create next-generation conversational AI shopping experiences by engaging customers in pre- and post-purchase dialogues. The TaskBot Challenge will run for three years, and initially teams will focus on two domains: cooking and home improvement.  The challenge incorporates multimodal customer experiences, so in addition to receiving verbal instructions, customers with Echo screen devices, such as the new Echo Show 10, could also be presented with step-by-step instructions, images, or diagrams that enhance task guidance.

For example, a customer might ask Alexa how to fix a scratch on a car. The TaskBot will then ask the customer more questions about their task, and then interactively provide step-by-step instructions and explanations for each step, or potentially adjust its plan based on customer input. 

After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help the teams improve their TaskBot.

Alexa Prize TaskBot DIY project example
In the forthcoming Alexa Prize TaskBot Challenge, a customer might ask Alexa how to fix a scratch on a car. The interaction above is an example of how a multi-turn, multi-step conversation might occur. After the interaction ends, the customer will be asked to rate how helpful that TaskBot was with the task, and will have the option to provide freeform feedback to help teams improve their TaskBot.
Credit: Glynis Condon

Success in the challenge will require participants to advance the state of the art in conversational AI, and address difficult science challenges related to knowledge representation and inference, commonsense and causal reasoning, and language understanding and generation, among others — requiring synthesis of multiple areas and approaches in AI.

“In developing the TaskBot Challenge, we tried to set a goal that is scientifically ambitious and novel, yet potentially achievable within a three-year time horizon,” Agichtein explained.  “For example, the participants will have to integrate into the interaction the domain knowledge from structured and unstructured sources, such as databases of recipes and ingredients, with commonsense and causal reasoning to understand if a step in a recipe is not possible. Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.”

Interacting with millions of customers attempting to accomplish tasks in the messy real world will be humbling, challenging, and yet inspiring experience for university students.
Eugene Agichtein

Another scientific challenge will be how the participating teams guide a customer through complex, multi-step plans that may need to be revised if, for instance, the customer needs to substitute an ingredient, or doesn’t have a tool required to complete the task. 

“That’s where things get really challenging” Agichtein said. “The TaskBot must first develop a plan — baking a cake, for instance — and then lead the customer through the baking process. The TaskBots will have to understand when customers are getting into trouble, say, if they have run out of flour. The TaskBots will then have to suggest solutions to such problems and adjust the plan as necessary.”

In year one of the competition, Agichtein expects teams to focus primarily on single-session tasks, but teams have to be prepared to maintain and resume tasks over multiple sessions, perhaps extending across multiple days. 

“In year one, we won’t expect the TaskBots to successfully handle very complex tasks, especially those that span multiple sessions, but it’s a goal we’ll want teams to eventually address over the course of the challenge,” he said.

Other challenges the teams will confront is what tasks to try to help with, and what tasks are inappropriate or dangerous, and have to be declined. 

The deadline for university teams to apply for the challenge is April 16, 2021. Up to ten teams will be selected to participate in the challenge by June 11, and the competition will begin on June 14.  The year-long competition will conclude in May 2022, with winners being announced the following month.
Teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the TaskBot Toolkit, as well as other resources data, and Alexa team support. The winning team receives a $500,000 prize, and the second- and third-place teams receive prizes of $100,000 and $50,000, respectively.

Alexa Prize Socialbot Grand Challenge

The Alexa Prize first launched in 2016 as a competition for university students dedicated to advancing the field of conversational AI. Teams are challenged to design socialbots that Alexa customers can interact with via Alexa-enabled devices. The student teams’ ultimate goal is to meet the Grand Challenge: earn a composite score of 4.0 or higher (out of 5) from the judges, and have the judges find that at least two-thirds of their conversations with the socialbot in the final round of judging remain coherent and engaging for 20 minutes.

The teams selected for the challenge receive a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to the Cobot (conversational bot) toolkit and other tools, data, and Alexa team support.

In previous challenges, participating teams have improved the state of the art for open domain dialogue systems by developing improved natural language understanding (NLU) systems, neural response generation models, common sense knowledge modeling, and dialogue policies leading to smoother, and more engaging conversations. Alexa Prize also has led to innovative solutions that are now incorporated into existing customer experiences, such as an explicit content filter and neural response generator.

A team from the University of Washington won the inaugural competition. In 2018, a team from the University of California, Davis won the challenge, and the team from Emory University won last year.  Research papers are published each year by the participating teams, and by the Amazon Alexa Prize team.  The papers are accessible from the Alexa Prize website.

Nine university teams from around the globe are currently participating in Alexa Prize Socialbot Grand Challenge 4. The challenge began last November and will conclude in August 2021. The winning team receives a $500,000 prize, and the second- and third-place team receive prizes of $100,000 and $50,000, respectively. The grand challenge, a $1 million research grant, will be awarded to the winning team’s university if it attains a composite score of 4.0 or higher, on a 5-point scale, and at least two-thirds of their socialbot’s conversations with interactors last for 20 minutes.

Customers can engage with one of the existing competitions’ socialbots simply by saying, “Alexa, let’s chat".

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
Are you fascinated by the power of Large Language Models (LLM) and applying Generative AI to solve complex challenges within one of Amazon's most significant businesses? Amazon Selection and Catalog Systems (ASCS) builds the systems that host and run the world's largest e-Commerce products catalog, it powers the online buying experience for customers worldwide so they can find, discover and buy anything they want. Amazon's customers rely on the completeness, consistency and correctness of Amazon's product data to make well-informed purchase decisions. We develop LLM applications that make Catalog the best-in-class source of product information for all products worldwide. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries) and multitude of input sources (millions of sellers contributing product data with different quality). We are seeking a passionate, talented, and inventive individual to join the Catalog AI team and help build industry-leading technologies that customers will love. You will apply machine learning and large language model techniques, such as fine-tuning, reinforcement learning, and prompt optimization, to solve real customer problems. You will work closely with scientists and engineers to experiment with new methods, run large-scale evaluations, and bring research ideas into production. Key job responsibilities * Design and implement LLM-based solutions to improve catalog data quality and completeness * Conduct experiments and A/B tests to validate model improvements and measure business impact * Optimize large language models for quality and cost on catalog-specific tasks * Collaborate with engineering teams to deploy models at scale serving billions of products