Ten university teams selected for Alexa Prize TaskBot Challenge 2

Second iteration features five new teams.

Amazon today announced that ten teams from around the globe have been selected to participate in the Alexa Prize TaskBot Challenge year 2, a university challenge focused on developing multimodal (voice and vision) conversational agents that assist customers in completing tasks requiring multiple steps and decisions.

Alexa Prize is a flagship industry-academic collaboration dedicated to accelerating the science of conversational artificial intelligence (AI) and multimodal human-AI interactions.

“Prize competitions provide an agile science experimentation framework for researchers and students encouraging them to explore transformational ideas at the boundaries of what is achievable,” said Reza Ghanadan, senior principal scientist with Alexa AI and head of Alexa Prize. “We have developed the CoBot platform and tools to lower the barriers to AI innovation for both the academic research community and students interested in conversational AI assistants. These tools allow students to quickly deploy their solutions at scale in the real world with Alexa, then observe, evaluate, and enhance their research results using feedback from Alexa customers.”

Photo of Participants in the Alexa Prize TaskBot Challenge Bootcamp
The Alexa Prize TaskBot Bootcamp was held in Seattle, Washington, with representatives from all ten university teams.

The teams selected for the challenge, which began in January, feature five returning entrants — including the top three finishers in the most recent challenge — and five new universities.

Team

University

Faculty advisor

Returning

TWIZNOVA School of Science and TechnologyJoão Magalhães
EvoquerBOTPenn State UniversityRui Zhang
Taco 2.0The Ohio State UniversityHuan Sun
GRILLUniversity of GlasgowJeff Dalton
MarunaUniversity of Massachusetts AmherstHamed Zamani

New

BoilerBotPurdue UniversityJulia Rayz
DiWBotRutgers UniversityMatthew Stone
SageUniversity of California, Santa CruzXin (Eric) Wang
ISABELUniversity of PittsburghMalihe Alikhani
PLAN-BotVirginia TechIsmini Lourentzou

The prizes for overall performance in the competition will be $500,000 for the first-place team, $100,000 for second, and $50,000 for third. Those prizes will be paid out to the students on the teams with the best overall performance.

“I am delighted to see that new teams are joining the second year of the competition together with returning teams, who, by competing again, are signaling to us that they found value in the TaskBot challenge, said Yoelle Maarek, vice president research and science for Amazon Shopping.  

“We expect these talented graduate students to continue surprising us, as well as Amazon customers, this year. Connecting academia, Amazonians, and actual customers experimenting with taskbots, is a winning combination to keep pushing the boundaries of science in conversational AI for Alexa to delight and ease the lives of millions of customers.”

The Alexa Prize is a competition for university students dedicated to advancing the field of conversational AI. Launched in 2016, the program was created to recognize students from around the globe who are changing the way we interact with technology.

TaskBot Challenge 2 teams are working to address one of the hardest problems in conversational AI — creating next-generation conversational AI experiences that delight customers by addressing their changing needs as they complete complex tasks. This challenge builds upon the Alexa Prize’s foundation of providing universities a unique opportunity to test cutting-edge machine learning models with actual customers at scale.

The Alexa Prize TaskBot challenge provides a realistic scenario with real-user multimodal interactions, making this the perfect setting to observe and measure human-bot conversations and AI algorithms in a groundbreaking setting.
rafael_ferreira_twiz.jpg
Rafael Ferreira, NOVA School of Science and Technology, Team TWIZ
Our vision of EvoquerBOT combines improving task completion rates and elevating user satisfaction. To this end, we deliver innovative solutions to fundamental NLP challenges.
haoran_zhang.jpeg
Haoran Zhang, Penn State University, Team EvoquerBOT
We are especially interested in developing innovative ways to achieve successful coordination of multiple modalities, such as visual and verbal elements, and create a more engaging and intuitive user experience.
Lingbo_Mo.JPG
Lingbo Mo, The Ohio State University, Team Taco 2.0
The GRILL team is excited to continue bringing cutting-edge AI research to improve people’s lives. Our research team works on new capabilities of foundation models that understand text, images, and the surrounding world.
Sophie_portrait.jpg
Sophie Fischer, University of Glasgow, Team GRILL
The competition lets us create interfaces for the general public in a production environment – it’s a unique opportunity to connect our research with our career goals.
Baber (Rutgers).jpeg
Baber Khalid, Rutgers University, Team DiWBot
We are very excited to be part of the community and look forward to working with the Alexa team and other teams.
Anthony_Sicilia.jpg
Anthony Sicilia, University of Pittsburgh, Team ISABEL
The Alexa Prize TaskBot Challenge combines a vast range of tasks over multiple domains with multimodal outputs. This is the ultimate test for any moonshot concept, and we can't wait to see what the real world has in store for us.
purdue 2.jpg
Rey (Alex) Gonzalez, Purdue University, Team BoilerBot
Participating in this competition is an incredible opportunity that will allow us to do applied research and ship it to real users.
ChrisSamarinas_DSC02670.jpg
Chris Samarinas, University of Massachusetts Amherst, Team Maruna
Although artificial intelligence has experienced explosive development in the past decade, there is still a gap between research and real-world application. The TaskBot Challenge provides us with a unique opportunity to explore multimodal AI in practical situations.
UCSC Kaishi TB2.png
Kaizhi Zheng Univerisity of California, Santa Cruz-Amherst, Team Sage
Our bot will make adaptable conversation a reality by allowing customers to follow personalized decisions through the completion of multiple, sequential sub-tasks and adapt to the tools, materials, or ingredients available to the user by proposing appropriate substitutes and alternatives.
Afrina Tabassum
Afrina Tabassum

TaskBot is the first conversational AI challenge to incorporate multimodal customer experiences, so in addition to receiving verbal instructions, customers with Echo Show or Fire TV devices, can also be presented with step-by-step instructions, images, or diagrams that enhance task guidance.

This year’s challenge has been expanded to include more hobbies and at-home activities. Participating teams were asked to propose interesting ways to incorporate visual aids into every conversation turn when a screen is available. Innovative ideas on improving the presentation of visual aids, as well as the coordination of visual and verbal modalities, were part of the team selection criteria.

Each university selected for the challenge receives a $250,000 research grant, Alexa-enabled devices, free Amazon Web Services (AWS) cloud computing services to support their research and development efforts, access to Amazon scientists, the CoBot (conversational bot) toolkit and other tools such as automated speech recognition through Alexa, neural detection and generation models, conversational data sets, and design guidance and development support from the Alexa Prize team.

"Alexa, let's work together"

The university teams’ taskbots will be available for Alexa customers to engage with in May 2023 with a finals event being held in September, and winners announced later that month.

As with the previous challenge, Alexa customers can engage in conversation with teams’ taskbots when they become available in May by saying, “Alexa, let’s work together.” Until then, “Alexa, let’s work together” will direct you to conversations with the previous challenge winners of 2022 and the Alexa Prize TaskBot.

After initiating the interaction, Alexa customers then receive a brief message informing them that they are interacting with an Alexa Prize university taskbot before being randomly connected to one of the participating taskbots.

After exiting the conversation with the taskbot, which customers can do at any time, the customer is prompted for a verbal rating, followed by an option to provide additional feedback. The interactions, ratings, and feedback are shared with the teams to help them improve their taskbots. Customer ratings are also used to determine which university teams will move on to the semifinals and finals.

Our goal is to contribute to the multimodal conversational AI field and move it closer to the way humans perceive, reason, and communicate through multimodal information.
joao_magalhaes_twiz.jpg
João Magalhães, associate professor, NOVA School of Science and Technology, Team TWIZ
We look forward to the Challenge because it is the perfect platform to create multimodal, tasked-oriented dialogue systems that elevate user experience and engagement.
rui_zhang.jpeg
Rui Zhang, assistant professor, Penn State University, Team EvoquerBOT
Through this TaskBot Challenge, we hope our work can expand the horizon of conversational AI along dimensions like dialogue depth, multi-modal coordination, commonsense reasoning, and learning from use.
Huan_Sun.png
Huan Sun, associate professor, The Ohio State University, Team Taco 2.0
The GRILL team is creating the next generation of open assistants that understand and use knowledge about the world and can communicate effectively to inform and educate.
jeff.jpeg
Jeff Dalton, associate professor, University of Glasgow, Team GRILL
Our TaskBot will help people get things done through personalized, adaptive, and context-aware conversational interaction by combining our research results with the state-of-the-art capabilities of Alexa devices.
Matthew Stone (Rutgers).jpg
Matthew Stone, professor, Rutgers University, Team DiWBot
We work towards making conversational AI technology more inclusive and collaborative. Inclusive Alexa can collaborate with users from diverse cultures and with different communication capabilities and preferences.
Malihe_Alikhani.jpg
Malihe Alikhani, assistant professor, University of Pittsburgh, Team ISABEL
We hope to develop a task-oriented system that can interact with users based on their level of knowledge, experience, and communication preference.
purdue 1.jpg
Julia Rayz, professor, Purdue University, Team BoilerBot

Success in the previous TaskBot Challenge required teams to address many difficult AI obstacles. The challenge required the fusion of multiple AI techniques including knowledge representation and inference, commonsense and causal reasoning, and language understanding and generation.

The “GRILLBot” team from University of Glasgow won the TaskBot 1 Challenge, earning a $500,000 prize for its performance. Teams from NOVA School of Science and Technology (Portgual) and The Ohio State University earned second- and third-place prizes, respectively.

Research papers from Amazon’s Alexa Prize team, and each of the competing teams, can be viewed and downloaded here.

Alexa Prize Taskbot Challenge Finals | Amazon Science

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bangalore
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a highly experienced and seasoned science leader, you will apply state of the art natural language processing and computer vision research to video centric digital media, while also responsible for creating and maintaining the best environment for applied science in order to recruit, retain and develop top talent. You will lead the research direction for a team of deeply talented applied scientists, creating the roadmaps for forward-looking research and communicate them effectively to senior leadership. You will also hire and develop applied scientists - growing the team to meet the evolving needs of our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment