Amazon Science celebrates Pi Day

Times Square display honors scientists, engineers, and mathematicians past, present, and future.

  1. Pi Day is an annual celebration of the mathematical constant π (pi), and is observed on March 14 since 3, 1, and 4 are the first three significant digits of π. Pi Day was first observed in 1988, and since then celebrations of the day often have involved eating pie, or holding various mathematical competitions.

    To mark Pi Day this year, Amazon Science utilized a Times Square billboard normally used by Amazon Music to honor scientists, engineers, and mathematicians past, present, and future.

    The billboard display ran from midnight to 8 a.m. and again — for 3 hours and 14 minutes — from 3:14 p.m. to 6:28 p.m. The display (which you can watch above) began by honoring Marie Curie, the first woman to be awarded a Nobel Prize in 1903 for her contributions to physics. It was Curie who once famously said, “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.”

    On Pi Day, we honored some of the scientific giants on whose shoulders we stand, feature a few key accomplishments achieved by Amazon’s researchers and engineers, and highlight some of our university collaborators who are developing the next generation of STEM talent who will help us understand our world more fully, so we may fear less.

    For, as Alan Turing once said, “We can only see a short distance ahead, but we can see plenty there that needs to be done.”

    Below are items highlighted on the Times Square billboard:

  2. Marie Curie — 21911

    Curie — the first and only person to win two Nobel prizes in scientific categories — won her second Nobel Prize in 1911 “in recognition of her services to the advancement of chemistry by the discovery of the elements radium and polonium, by the isolation of radium and the study of the nature and compounds of this remarkable element.”

  3. arXiv — 2035720

    arXiv “hosts more than 2,035,720 scholarly articles in the fields of physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics.” arXiv was founded by Paul Ginsparg in 1991 and is now maintained and operated by Cornell Tech.

  4. Alexa — 11614

    Alexa was introduced to the world on Nov. 6, 2014. Now, eight years later, customers in more than 80 countries interact with Alexa billions of times each week, and Amazon and Lockheed Martin are sending the first Alexa to space as part of Callisto, a technology demonstration on NASA's upcoming Artemis I mission.

  5. Albert Einstein — 1879

    Albert Einstein was born in Ulm, in Württemberg, Germany, on March 14, 1879. He was awarded the Nobel Prize in Physics in 1921 “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect.”

  6. USC Viterbi School of Engineering — 7,930,681,085

    USC’s engineering school is named for Andrew Viterbi who earned one of the first doctorates in electrical engineering ever granted at USC. The Viterbi Algorithm, a mathematical formula to eliminate signal interference, paved the way for the widespread use of cellular technology.

  7. Amazon — Lab126

    Located in Sunnyvale, Calif., the team at Lab126 designs and engineers the Amazon Astro robot, Fire tablets, Kindle e-readers, Amazon Fire TV, Amazon Echo, and other devices. They’re also exploring how devices are accidentally damaged — and how to help ensure they survive more of those incidents.

  8. Katherine Johnson — 71962

    Katherine Johnson did the trajectory analysis for NASA’s Friendship 7 before it launched in 1962. The complexity of the flight required the construction of a worldwide communications network, but astronauts were wary of the electronic calculating machines. John Glenn asked to have Johnson run the numbers by hand. “If she says they’re good,’” Johnson recalled Glenn saying, “then I’m ready to go.” Glenn’s flight was a success.

  9. Columbia Engineering — 1150

    Edwin Armstrong developed FM radio on Columbia's campus at 1150 Amsterdam Avenue in New York. During an IRE conference in 1935, he described FM radio “and then turned on his receiver in front of the audience. An FM transmission … came in totally free of static and, thanks to the wide audio spectrum being used, with a fidelity never heard before. A stunned audience listened to a live music performance transmitted with remarkable clarity and to a series of sounds, such as a glass of water being poured or a piece of paper being torn — which would have been unrecognizable over AM radio.”

  10. Amazon S3 — 16

    Amazon S3 (Simple Storage Service) is an object storage service that offers industry-leading scalability, data availability, security, and performance. It was launched 16 years ago on Pi Day, as the first generally available AWS service. At the 2021 ACM Symposium on Operating Systems Principles, Amazon researchers won a best-paper award for their work using automated reasoning to validate that ShardStore — a new S3 storage node microservice — will do what it’s supposed to.

  11. Alan Turing — 186

    Alan Turing, WWII enigma codebreaker and father of computer science, had an IQ of 186. In 1935, when Turing was 22 years old, he wrote a paper titled, “On Computable Numbers, With an Application to the Entscheidungsproblem” (German for “decision problem”). The paper is widely recognized as having provided “a conceptual model for modern computers.”

  12. UCLA Samueli School of Engineering — 3420

    The first internet transmission was sent on Oct. 29, 1969 from 3420 Boelter Hall at UCLA. The message sent to Stanford Research Institute on the evening of Oct. 29 was meant to be “LOGIN.” However, the system crashed, so the first message sent over the internet was: “LO.” The next attempt was a success, and the original Interface Message Processor, known as IMP No. 1, the equivalent to today’s router, still stands in Boelter Hall.

  13. Amazon Research Awards — 385132

    Amazon, via the Amazon Research Awards (ARA) program, has funded more than 385 research proposals at 132 universities since 2018. The ARA program funds academic research and related contributions to open-source projects by top academic researchers who have used their research awards to help improve MRI scans, create computational simulations of the human heart, understand the impact of aerosol-cloud interactions on climate, and teach robots to behave like schools of fish.

  14. Grace Hopper — 6

    The Cray XE6 “Hopper” supercomputer was named after computer science pioneer Grace Hopper. One of the first three computer “programmers,” Hopper was responsible for programming the Mark I. As head programmer for Remington Rand, she worked on the UNIVAC I (Universal Automatic Computer). In 1952 her programming team developed the first computer language “compiler” called A-0. Her team also developed Flow-Matic, the first programming language to use English-like commands.

  15. Caltech — 9019

    Scientists and engineers at Caltech and NASA’s Jet Propulsion Laboratory (JPL) landed the Mars Pathfinder on Mars on July 4, 1997 and have been operating rovers ever since — or for 9019 Earth days on March 14. Over a three-month period, Pathfinder returned 2.3 billion bits of information, including more than 16,500 images from the lander and 550 images from the rover, as well as more than 15 chemical analyses of rocks and soil and extensive data on winds and other weather factors.

  16. Blue Origin — 19314

    New Shepard has flown 19 consecutive successful launches, including 3 flights with a total of 14 astronauts aboard. Named after Mercury astronaut Alan Shepard, the first American to go to space, New Shepard is “a reusable suborbital rocket system designed to take astronauts and research payloads past the Kármán line – the internationally recognized boundary of space.”

  17. Georgia Tech — 161972

    John Young, who became the 9th person to walk on the moon in 1972, graduated from Georgia Tech's Guggenheim School of Aerospace Engineering. Young served as commander of Apollo 16, spending three nights on the moon’s surface and driving 16 miles in a lunar rover. Young was also at the helm for the first space shuttle mission, STS-1, in April 1981.

  18. University of Washington — 14492

    Waldo Semon, a University of Washington alumnus, conducted 14,492 experiments to develop synthetic rubber used during WWII. Semon is best known for inventing vinyl, the world's second most-used plastic. Semon held 116 patents, and was inducted into the Invention Hall of Fame in 1995 at age 97.

  19. Alexa Prize — 24806391

    There have been more than 24,806,391 interactions with Alexa Prize socialbots. That number will only continue to climb as the competition meant to help advance the science of conversational AI continues. Last year, Team Alquist from Czech Technical University won the Alexa Prize SocialBot Grand Challenge 4 competition.

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.