Philip Stier, the head of Atmospheric, Oceanic and Planetary Physics at the University of Oxford, is seen standing with his arms folded under a blue sky with some clouds in the background.
Philip Stier is the head of Atmospheric, Oceanic and Planetary Physics at the University of Oxford, where he also leads the Climate Processes Group.
John Cairns

Philip Stier is cracking cloud-based climate conundrums

The Oxford professor says merging AI, ML, and climate science can help us understand the impact of aerosol-cloud interactions on climate.

Clouds are famously hard to pin down. This is problematic in a world in which climate science is key to our future existence, and it is high time clouds coughed up their secrets. So it is fortunate that advances in machine learning and — no pun intended — cloud computing are finally starting to dissipate their mystery.

“The combination of machine learning and climate sciences is about to really take off,” says Philip Stier.

And he should know. A professor of atmospheric physics, Stier is head of Atmospheric, Oceanic and Planetary Physics at the University of Oxford, where he also leads the Climate Processes Group. “The role of clouds remains one of the biggest uncertainties in climate science: how clouds respond to changes in pollution and to warming itself,” says Stier, who is dedicating his career to tackling this uncertainty.

To that end, in 2018 Stier’s group was granted an Amazon Machine Learning Research Award to support the work of a new program called iMIRACLI (innovative MachIne leaRning to constrain Aerosol-cloud CLimate Impacts), a European Union-funded graduate program that Stier leads, designed to bring together pioneering climate scientists, machine learning experts, and industry partners to help build the next generation of climate data scientists. “We are creating a new cohort of people that are literate in both climate science and data science,” says Stier.

The idea is that a merging of AI, ML, and climate science can deliver breakthroughs in our understanding of the impact on climate of aerosol-cloud interactions. This is crucial because clouds reflect the sun’s heat back into space, producing a cooling effect. And because cloud droplets can only coalesce around atmospheric aerosols — be they natural aerosols or emitted by human activity — more aerosols mean brighter, more reflective clouds.

Truly big data

As a physicist and climate scientist, Stier works with big data worthy of the name.

“Machine learning people often say, ‘Oh yeah, we work with big data,’ but the climate data sets we have are truly massive. We're talking about satellites downlinking terabytes per day, and we must make sense of it all.”

But the complex nature of cloud behavior creates significant uncertainties in climate models. “We understand the greenhouse effect very well. With respect to the radiative forcing — warming — caused by greenhouse gases, particularly CO2, the uncertainty is relatively small,” says Stier. “The effects of atmospheric aerosols are much more uncertain, partly because you need to know not only the composition or the concentration, but also the particle size, shape and so on.” Aerosols are also short-lived compared with CO2, typically lasting a week before falling out of the sky, while being continually replaced by ongoing emissions.

Air pollution kills millions of people every year, so we want to get rid of it, but there is a risk that by cleaning up air pollution we will accelerate global warming — it’s a moral dilemma.
Philip Stier

Trying to model and predict the cooling effect of clouds is extremely tough, but Stier and his colleagues estimate that the aerosols pumped into the atmosphere by human activity are currently offsetting between a fifth and a half of the warming caused by greenhouse gases. “It is important to accurately quantify this cooling effect. Air pollution kills millions of people every year, so we want to get rid of it, but there is a risk that by cleaning up air pollution we will accelerate global warming — it’s a moral dilemma.”

The iMIRACLI team is taking several approaches, utilizing the power of machine learning. One early strand of research involved a phenomenon in stratocumulus clouds, called pockets of open cells (POCs). They occur when regions of large, blanket clouds break up to form pockets of scattered clouds. This change in cloud cover can dramatically reduce the amount of heat reflected into space.

“A number of papers suggested that if aerosols could change the default state of these POCs from being more open to closed, the cooling effect could be huge,” says Stier. “But none of these papers has analyzed the occurrence of POCs statistically, because you would have to go through a huge amount of satellite data and, by human eye, this is far too laborious.”

So Duncan Watson-Parris, a postdoc and iMIRACLI course director, led the development of an object-detection model based a convolutional neural network, and trained the model using a set of human-annotated POCs in satellite images. Then they let the model zoom through 20 years of NASA’s high-resolution satellite imagery. The model ran on the AWS cloud, using scalable, high performance EC2 P2 instances. It was made easier thanks to the high-speed “Janet” connection between AWS cloud and JASMIN, the UK's data analysis facility for environmental science in Harwell, where the satellite data was stored.

An example “pocket of open cells” highlighted using a machine learning algorithm in a NASA MODIS satellite image.
An example “pocket of open cells” highlighted using a machine learning algorithm in a NASA MODIS satellite image.
Duncan Watson-Parris/NASA WorldView

The model identified 8,500 instances of POCs in the data set, creating the world’s first comprehensive database of POCs. Analysing these data, the team concluded that the global radiative effect of POCs was actually very small.

“It turned out that POCs are pretty rare and probably wouldn’t have large climate impacts,” says Watson-Parris. “However, the transition from closed to open cellular convection more generally is a crucial challenge in understanding how clouds will respond to the warming climate and, in turn, what effect that will have on warming. So right now on AWS we are combining our POC model with more recent work on detecting night-time clouds to track the transition from closed to open stratocumulus clouds.”

Simple sophistication

Another challenge that the iMIRACLI team is using AWS to address is the enormous amount of computing resources it can take to run climate and other Earth-system models. Such models may have hundreds of tuneable parameters, require immense compute power, and generate terabytes of output. In short, they are unwieldy. To this end, the team has developed what they call a scalable Earth System Emulator — a tool for emulating and validating a variety of more complex models and outputs.

“What policymakers often want is a single number or just one line plotted, to answer questions such as ‘If the amount of atmospheric sulphur dioxide doubled, what would the impact be on the temperature in 2050?’” The problem is, explains Stier, complex climate models are not, by definition, simple creatures.

“So the ability to emulate the behavior of these complex models with something much more simple is very useful,” He says. Running on AWS’s deep learning machine instances, the emulator has already been successfully put to use in the UK Met Office’s climate model, improving the calibration of its physics and reducing uncertainties in the effect of atmospheric aerosols on historical and future warming.

The Earth System Emulator is an open-source tool based in the cloud. Cloud services are a key aspect of climate science’s future, says Stier.

“The real issue in our field is the colossal data sets, which are now so big that we can't move the data around so much anymore. Ideally, we want to compute in the cloud, and have the analysis and ML tools right where the data are. AWS, for example, is already archiving satellite data, so without really moving the data we can work at a computing scale beyond the installed capacity of most universities. It’s a big change.”

Watson-Parris agrees, adding that cloud-based services also open climate science to a wider variety of researchers.

“Platforms like Amazon SageMaker lower the barrier to entry for scientists who don’t necessarily have the computational or machine learning background to set up their own deep learning instances,” he says. “That helps to increase access to climate data, which can otherwise be somewhat siloed in the large, well-funded centers in the Global North.”

It will certainly take a worldwide effort to clear the uncertainty around the present and future effects of clouds on the Earth’s climate, and Stier is gratified to be in the vanguard of this work.

“It's a very big challenge, but a fascinating one,” he says. “Only when we fully understand all the factors controlling clouds — including their exact response to pollution, but also to environmental factors — will I be happy to retire.”

Related content

US, CA, Palo Alto
Amazon is looking for passionate, talented, and inventive Software Development Managers to help build industry-leading search technology. Our team's mission is to create the next generation of search infrastructure and science that will provide a delightful experience to Amazon’s customers. You will manage internationally recognized experts to develop large-scale, high-performing systems that will integrate with the state of the art in search, information retrieval, natural language understanding, graph neural networks, and other machine learning techniques. Your work will directly impact millions of our customers.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
United States, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.