Blanca Rodriguez, a professor of computational medicine at the University of Oxford
Blanca Rodriguez, a professor of computational medicine at the University of Oxford, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Blanca Rodriguez: Computational simulation of the human heart

The University of Oxford professor believes computer modeling and simulation are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

When Blanca Rodriguez began her exploration of the computational simulation of the human heart more than 20 years ago, the idea that an individual heart could be digitally recreated and analyzed using AI and machine learning to simulate which therapies would most effectively treat heart diseases was little more than a promising concept. 

Today, having devoted her career to the nascent field of computational cardiology, Rodriguez, a professor of computational medicine at the University of Oxford and a Wellcome Trust Senior Research Fellow, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Professor Blanca Rodriguez on how computer models can replace animal research

Computer simulation is hardly a new technology. In 1960, an Oxford biologist named Denis Noble began experimenting with mathematical models of the heart. Engineers in the automotive and aerospace industries have long embraced such simulation techniques, Rodriguez points out. All new vehicles and aircraft are designed with AI-based computer simulation as a key tool to virtually model each function, design element, and potential outcome. This concept, known as a digital twin, is now being embraced in the world of cardiology, and Rodriguez is a leading proponent.

“We’re doing the same thing with the heart, which is very challenging,” Rodriguez said. “We are gathering the clinical data of a patient and trying to build a virtual tool with those data. We want to simulate how that particular heart works, and simulate whether certain therapies or devices would work better than others so that we can understand how the diseases are affecting a particular patient in a particular way.”

Using AI and machine learning to crunch the massive amounts of clinical data, along with the ability to personalize that data for each individual patient, represents a significant breakthrough in computational cardiovascular science, Rodriguez said. As the technology is refined and improved, the ability to accommodate each patient’s unique physiology will inevitably lead to better and less invasive outcomes.

“We’re trying to understand and predict whether some therapies work better for certain patients and to understand disease conditions in a more personalized way,” Rodriguez explained.

In silico method

This “in silico” or computational methodology — as opposed to in vitro or in vivo — is likely to become the de facto method for drug development, and potentially for clinical treatment of heart patients in the future. Rather than having a generic, one-size-fits-all model, the digital twin will reveal the intricacies and disease conditions that impact each human being in a distinctive way.

A 2018 recipient of an AWS Machine Learning Research Award, Rodriguez’s immersion at the intersection of cardiology and computer science was hardly the career path she anticipated. A native of the Mediterranean port city of Valencia in Spain, Rodriguez received a degree in electrical engineering from the Universidad Politecnica de Valencia in 1997.

“I knew nothing about medicine or cardiology and nobody in my family was doing anything like this,” she said. But when she attended a talk about research in cardiology by Jose Jalife, a renowned University of Michigan arrhythmia specialist, she became “absolutely fascinated by the topic.” She immediately decided to pursue a PhD in computational medicine. She joined the Oxford faculty as a senior post-doctoral fellow in 2004 and has devoted her career to breakthrough research in the field.

Her work has attracted both academic and industry attention. Computer simulation is already having an impact in the medical and pharmaceutical communities. Until recently, drug companies have relied solely on animal testing for the most accurate and reliable way to test new drugs for effectiveness and side effects. According to research, animal testing yields a 75 to 85 percent accuracy rate and sometimes leads to drugs being withdrawn from the market due to safety issues.

The promise of computational models

Computational models of human heart cells are already providing much higher accuracy levels, with the added benefit of reducing the controversial use of animal testing, improving drug safety, and having greater likelihood of predicting adverse drug reactions in humans. 

“For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models, and that’s what has made industry very interested,” Rodriguez said. “We can replace some of the animal experiments and lower the costs. Plus, it’s fast.”

For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models.
Blanca Rodriguez

To that end, Rodriguez’s lab at Oxford has been collaborating not only with clinicians but also with the pharmaceutical industry, which is intrigued by the promise of computer models to test drug therapies prior to clinical trials. She is working with such giants at GSK, AstraZeneca, Sanofi, UCB, and Merck.

Gaining this kind of industry credibility is one of the most significant outcomes, according to Rodriguez, because several years ago these companies “were very skeptical. They had little knowledge of these computational methods so we had to collaborate with them and make the software really easy to use,” she explained. “We worked not only on the computational aspects, but also the human aspects to build credibility for these methods. That was always a challenge.” 

Using these techniques, drug makers can determine early on whether a certain drug has side effects. “Our knowledge of the human heart is such that we can build mathematical equations on the data we have and embed those equations in software programs that we can use to simulate what a drug is doing to the human heart,” she explained.

In addition, the work has attracted the attention and cooperation of important regulatory agencies such as the US Food and Drug Administration and various European regulators. Rodriguez’s Oxford lab is already jointly publishing white papers with such agencies.

The AWS Machine Learning Research Award has been a significant addition to the available resources for her group, Rodriguez said. “The MLRA has been instrumental for our work in generating methodological advances and demonstrating the potential of in silico clinical trials,” Rodriguez said. “We have published important papers describing the development of mathematical models of the human heart. These are being used for drug testing in academia, industry and regulatory agencies such as the FDA.”

Faster (and better) data analysis

In recent years, breakthroughs in AI and ML techniques have enabled much greater effectiveness using computational simulation by dramatically accelerating the speed of large dataset analysis. Images of thousands of human hearts can be analyzed in nanoseconds and, simultaneously, new biomarkers emerge that more accurately predict patient outcomes and preferred therapies.

These AI programs also enable the identification of subgroups of patients who share similar features but might have different conditions. People who have had a heart attack, for example, tend to be lumped together in one massive group. “But actually, the manifestation of the heart attack is very different in individual patients. AI and machine learning can help in identifying subgroups of patients who share the same features and could potentially benefit from a particular therapy,” Rodriguez said.

Among the challenges for AI and machine learning researchers is gaining access to huge databases of clinical data in order to test these models and train the algorithms. At Oxford, Rodriguez’s team has access to the massive UK Biobank, a large-scale biomedical database and research resource, and some hospitals are already sharing digitized clinical data. But due to privacy issues and cost constraints, vital data sets like these remain elusive.

“Our work depends on access to good datasets,” Rodriguez pointed out. “Not all hospitals are gathering data and there are a lot of ethical issues involved. Another challenge is finding candidates to do the research, particularly computer scientists who are able to understand medicine. People need to be both technically talented but also aware and knowledgeable about the clinical challenges.”

Already seeing the impact of her work, Rodriguez said the technology can accelerate the development and implementation of important cardiovascular therapies, making those therapies more effective and safer for patients. The next decade promises to hold dramatic advances. “I don’t think it’s a dream. It’s happening,” she declared. “It’s just going to take time.”

Research areas

Related content

  • August 26, 2025
    With a novel parallel-computing architecture, a CAD-to-USD pipeline, and the use of OpenUSD as ground truth, a new simulator can explore hundreds of sensor configurations in the time it takes to test just a few physical setups.
  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Global Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our stores. As a key member of our team, you'll develop and deploy machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of our selling partners. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, rings of accounts, identity change, holistic seller risk and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners, science and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI