Blanca Rodriguez, a professor of computational medicine at the University of Oxford
Blanca Rodriguez, a professor of computational medicine at the University of Oxford, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Blanca Rodriguez: Computational simulation of the human heart

The University of Oxford professor believes computer modeling and simulation are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

When Blanca Rodriguez began her exploration of the computational simulation of the human heart more than 20 years ago, the idea that an individual heart could be digitally recreated and analyzed using AI and machine learning to simulate which therapies would most effectively treat heart diseases was little more than a promising concept. 

Today, having devoted her career to the nascent field of computational cardiology, Rodriguez, a professor of computational medicine at the University of Oxford and a Wellcome Trust Senior Research Fellow, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Professor Blanca Rodriguez on how computer models can replace animal research

Computer simulation is hardly a new technology. In 1960, an Oxford biologist named Denis Noble began experimenting with mathematical models of the heart. Engineers in the automotive and aerospace industries have long embraced such simulation techniques, Rodriguez points out. All new vehicles and aircraft are designed with AI-based computer simulation as a key tool to virtually model each function, design element, and potential outcome. This concept, known as a digital twin, is now being embraced in the world of cardiology, and Rodriguez is a leading proponent.

“We’re doing the same thing with the heart, which is very challenging,” Rodriguez said. “We are gathering the clinical data of a patient and trying to build a virtual tool with those data. We want to simulate how that particular heart works, and simulate whether certain therapies or devices would work better than others so that we can understand how the diseases are affecting a particular patient in a particular way.”

Using AI and machine learning to crunch the massive amounts of clinical data, along with the ability to personalize that data for each individual patient, represents a significant breakthrough in computational cardiovascular science, Rodriguez said. As the technology is refined and improved, the ability to accommodate each patient’s unique physiology will inevitably lead to better and less invasive outcomes.

“We’re trying to understand and predict whether some therapies work better for certain patients and to understand disease conditions in a more personalized way,” Rodriguez explained.

In silico method

This “in silico” or computational methodology — as opposed to in vitro or in vivo — is likely to become the de facto method for drug development, and potentially for clinical treatment of heart patients in the future. Rather than having a generic, one-size-fits-all model, the digital twin will reveal the intricacies and disease conditions that impact each human being in a distinctive way.

A 2018 recipient of an AWS Machine Learning Research Award, Rodriguez’s immersion at the intersection of cardiology and computer science was hardly the career path she anticipated. A native of the Mediterranean port city of Valencia in Spain, Rodriguez received a degree in electrical engineering from the Universidad Politecnica de Valencia in 1997.

“I knew nothing about medicine or cardiology and nobody in my family was doing anything like this,” she said. But when she attended a talk about research in cardiology by Jose Jalife, a renowned University of Michigan arrhythmia specialist, she became “absolutely fascinated by the topic.” She immediately decided to pursue a PhD in computational medicine. She joined the Oxford faculty as a senior post-doctoral fellow in 2004 and has devoted her career to breakthrough research in the field.

Her work has attracted both academic and industry attention. Computer simulation is already having an impact in the medical and pharmaceutical communities. Until recently, drug companies have relied solely on animal testing for the most accurate and reliable way to test new drugs for effectiveness and side effects. According to research, animal testing yields a 75 to 85 percent accuracy rate and sometimes leads to drugs being withdrawn from the market due to safety issues.

The promise of computational models

Computational models of human heart cells are already providing much higher accuracy levels, with the added benefit of reducing the controversial use of animal testing, improving drug safety, and having greater likelihood of predicting adverse drug reactions in humans. 

“For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models, and that’s what has made industry very interested,” Rodriguez said. “We can replace some of the animal experiments and lower the costs. Plus, it’s fast.”

For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models.
Blanca Rodriguez

To that end, Rodriguez’s lab at Oxford has been collaborating not only with clinicians but also with the pharmaceutical industry, which is intrigued by the promise of computer models to test drug therapies prior to clinical trials. She is working with such giants at GSK, AstraZeneca, Sanofi, UCB, and Merck.

Gaining this kind of industry credibility is one of the most significant outcomes, according to Rodriguez, because several years ago these companies “were very skeptical. They had little knowledge of these computational methods so we had to collaborate with them and make the software really easy to use,” she explained. “We worked not only on the computational aspects, but also the human aspects to build credibility for these methods. That was always a challenge.” 

Using these techniques, drug makers can determine early on whether a certain drug has side effects. “Our knowledge of the human heart is such that we can build mathematical equations on the data we have and embed those equations in software programs that we can use to simulate what a drug is doing to the human heart,” she explained.

In addition, the work has attracted the attention and cooperation of important regulatory agencies such as the US Food and Drug Administration and various European regulators. Rodriguez’s Oxford lab is already jointly publishing white papers with such agencies.

The AWS Machine Learning Research Award has been a significant addition to the available resources for her group, Rodriguez said. “The MLRA has been instrumental for our work in generating methodological advances and demonstrating the potential of in silico clinical trials,” Rodriguez said. “We have published important papers describing the development of mathematical models of the human heart. These are being used for drug testing in academia, industry and regulatory agencies such as the FDA.”

Faster (and better) data analysis

In recent years, breakthroughs in AI and ML techniques have enabled much greater effectiveness using computational simulation by dramatically accelerating the speed of large dataset analysis. Images of thousands of human hearts can be analyzed in nanoseconds and, simultaneously, new biomarkers emerge that more accurately predict patient outcomes and preferred therapies.

These AI programs also enable the identification of subgroups of patients who share similar features but might have different conditions. People who have had a heart attack, for example, tend to be lumped together in one massive group. “But actually, the manifestation of the heart attack is very different in individual patients. AI and machine learning can help in identifying subgroups of patients who share the same features and could potentially benefit from a particular therapy,” Rodriguez said.

Among the challenges for AI and machine learning researchers is gaining access to huge databases of clinical data in order to test these models and train the algorithms. At Oxford, Rodriguez’s team has access to the massive UK Biobank, a large-scale biomedical database and research resource, and some hospitals are already sharing digitized clinical data. But due to privacy issues and cost constraints, vital data sets like these remain elusive.

“Our work depends on access to good datasets,” Rodriguez pointed out. “Not all hospitals are gathering data and there are a lot of ethical issues involved. Another challenge is finding candidates to do the research, particularly computer scientists who are able to understand medicine. People need to be both technically talented but also aware and knowledgeable about the clinical challenges.”

Already seeing the impact of her work, Rodriguez said the technology can accelerate the development and implementation of important cardiovascular therapies, making those therapies more effective and safer for patients. The next decade promises to hold dramatic advances. “I don’t think it’s a dream. It’s happening,” she declared. “It’s just going to take time.”

Research areas

Related content

US, WA, Seattle
Have you ever wanted to solve a mystery or be part of solving a case? Are you fascinated by detective stories or crime shows on TV? Do you love to catch bad actors, build ML models and solve complex problems. If so, working on the Loss Prevention Tech team as a Sr Applied Scientist is the place for you! We detect theft, fraud and organized crime happening across our global supply chain and operations for millions of items, for hundreds of product lines worth billions of dollars of inventory world-wide. We foster new game-changing ideas, creating ever more intelligent and self-learning systems to maximize the cost savings of Amazon's inventory losses. The primary role of a Sr Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on all the fraud investigations happening across Amazon operations. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in ( Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of building fraud detections, detecting organized crime and the ability to use data and research to make changes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Key job responsibilities - Own KPIs that measure fraud management performance and efficiencies. - Detect and automate theft, fraud MOs - Detect organized crime rings and bad actor clusters - Build data or computer vision based ML models - Perform end to end evaluation of operational defects, system gaps, and scaling challenges (both system and operational). - Contribute to the overall fraud management and product development strategies. - Present key learnings and vision to stakeholders and leadership. - Integrate ML detection models via software applications About the team We believe that building a culture that is welcoming and inclusive is integral to people doing their best work and is essential to what we can achieve as a company. We actively recruit people from diverse backgrounds to build a supportive and inclusive workplace. Our team puts a high value on work-live balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, TX, Dallas
Amazon is seeking a highly analytical and skilled Data Scientist to join our OpsTech Infrastructure Engineering (OTIE) team. The vision for our organization is to be the invisible scaffolding to provide Amazon’s network and device infrastructure for Global Operations. We deliver flexible, low-touch, cost-efficient infrastructure products by leveraging data, analytics, and automation to build a highly scalable and accessible network. If you are passionate about working with big data and thrive in a collaborative, innovative environment, we want to hear from you. As a Data Scientist, you will be responsible for data exploration and analyses, as well as AI model development. You will collaborate with data engineers to collect, preprocess, and maintain high-quality datasets. You will dive deep into the available data, identifying trends, patterns, and insights to inform AI initiatives. You will design, develop, and implement AI models, including machine learning and deep learning algorithms, to solve complex business challenges, ensuring that these models are optimized for accuracy, scalability, and real-time performance. You will support the deployment of AI models into production environments, ensuring efficient and reliable operation, and own the model performance monitoring, make improvements, and implement retraining strategies. Strong business and communication skills are essential for collaborating with business owners to develop key business questions and build solutions that provide answers and drive change. Key job responsibilities Thinking Big and generating ideas with the stakeholders. Working with customers and cross-functional stakeholder teams to identify, disambiguate, and define problems. Scoping long-term solutions as a series of smaller, more manageable iterations. Creating data science architectures, and building scalable solutions along with the data engineers. Running simulations, measuring performance, building ML models and designing optimization algorithms. Supporting existing models, while thinking about next generation solutions. Keep up-to-date with the latest AI research, technologies, and industry best practices. Share knowledge and promote AI innovation within the team. We are open to hiring candidates to work out of one of the following locations: Dallas, TX, USA
US, WA, Seattle
The Bad Actor Disincentives (BAD) team is responsible for removing the incentive for Bad Actors while accurately and fairly paying millions of third-party sellers along with disrupting the bad actor flywheel and change the economics of abuse within our store. The team works to ensure that bad actors cannot profit from using our services to abuse customers, selling partners and Amazon. While we obsess over customers, we specialize in obsessing over bad actors to identify their friction points and multiply them exponentially in ways that don’t impact good sellers. Our vision is to ensure Bad Actors do not receive a dollar from selling on Amazon and abusing our policies. If we successfully achieve our vision, then Bad Actors will stop committing misconduct on Amazon. This role requires outstanding technical skills, a deep understanding of machine learning approaches, and a passion for melding ML with great user experience/design. You must have a demonstrated ability for optimizing, developing, launching, and maintaining large-scale production systems. As a key member of the team, you will oversee all aspects of the software lifecycle: design, experimentation, implementation, and testing. You should be willing to dive deep when needed, move rapidly with a bias for action, and get things done. You should have an entrepreneurial spirit, love autonomy, know how to deliver, and long for the opportunity to build pioneering solutions to challenging problems. This role will demand resourcefulness and willingness to learn on both the technical and business side. The challenges we take on can involve a mix of large-scale distributed systems, big data technologies, machine learning science, and require a keen sense of customer obsession and long-term strategic thinking. Key job responsibilities You're a former engineer or scientist who can see the bigger picture. While your career is full of individual wins, it is now more fulfilling when your team is able to build, deliver, and impress. You enjoy leading and mentoring others, and want to work on projects that require innovative and creative thinking alongside deep technical problem solving. You challenge yourself and others to constantly come up with better solutions, and can deliver on a technical roadmap that serves our customers and the business optimally. You communicate clearly, and hold yourself and your team to a high bar. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon's Global Hiring Science team ensures we match the right people to the right roles, quickly, fairly, and with an amazing experience. To achieve this, we design, implement, and optimize hiring systems experienced by millions of candidates annually. We work in a data-rich, global environment solving complex problems with deep thought, large-sample research, and advanced quantitative methods to deliver practical solutions that make all aspects of hiring more fair, accurate, efficient, and enjoyable. Key job responsibilities We’re developing a new approach to hiring via a multi-year initiative to evolve how we define jobs and candidate qualifications, how we recommend and promote jobs to candidates, and how we help candidates find the roles in which they will be most successful, satisfied, and engaged. To accomplish this, we’ve created a specialized team of experienced industrial-organizational psychologists, applied scientists, engineers, and UX designers. We're looking for an experienced senior research science manager to lead a team of scientists working on this initiative who is equal parts researcher, consultant, and thought leader, with strong expertise in psychometrics, research methodology, and data analysis. In this role, you will collaborate with cross-functional teams to drive research, development, and implementation of innovative hiring technology, evaluation tools, approaches, and methods. The impact of your work will be global and applicable across all of Amazon’s businesses (e.g., AWS, Retail, Logistics, Kindle, and Business Development) and roles (e.g., hourly, technical, professional). A day in the life What you’ll do: • Manage the development and execution of large-scale, highly-visible global research, validation, and hiring optimization projects. • Solve complex, ambiguous measurement, legal defensibility, and experimental design challenges. • Lead the development and research of new content and approaches to assessment (e.g., high fidelity simulation, interactive item types, constructed response). • Apply the scientific method to answer novel research questions. • Influence executive project sponsors and stakeholders across the company. • Drive effective teamwork, communication, collaboration, and commitment across cross-functional groups with competing priorities. • Oversee complex statistical/quantitative analyses with large datasets. About the team We are a team of scientists, and this is an important part of our professional identities. We take our continuing education as well as our contributions to the continuing education of others seriously. To this end, we regularly look for opportunities to engage in reading groups with our peers, present at internal and external conferences, publish our work, and engage in other professional activities in support of our or others development. Learn more about being a scientist at Amazon: https://www.amazon.science. We embrace differences and are committed to furthering our culture of inclusion. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Seattle
Are you interested in working with top talent in Optimization, Operations Research and Supply Chain to help Amazon to efficiently match our Devices with worldwide customers? We have challenging problems and need your innovative solutions to make tremendous financial impacts! The Amazon Devices Science team is looking for a Research Scientist with background in Operations Research, Optimization, Supply Chain and/or Simulation to support science efforts to integrate across inventory management functionalities. Our team is responsible for science models (both deterministic and stochastic) that power world-wide inventory allocation for Amazon Devices business that includes Echo, Kindle, Fire Tablets, Amazon TVs, Amazon Fire TV sticks, Ring, and other smart home devices. We formulate and solve challenging large-scale financially-based optimization problems which ingest demand forecasts and produce optimal procurement, production, distribution, and inventory management plans. In addition, we also work closely with demand forecasting, material procurement, production planning, finance, and logistics teams to co-optimize the inventory management and supply chain for Amazon Devices given operational constraints. Key job responsibilities The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and ability to work in a fast-paced and ever-changing environment and a desire to help shape the overall business. Job responsibilities include: - Design and develop advanced mathematical, simulation, and optimization models and apply them to define strategic and tactical needs and drive appropriate business and technical solutions in the areas of inventory management and distribution, network flow, supply chain optimization, and demand planning - Apply mathematical optimization techniques (linear, quadratic, SOCP, robust, stochastic, dynamic, mixed-integer programming, network flows, nonlinear, nonconvex programming) and algorithms to design optimal or near optimal solution methodologies to be used by in-house decision support tools and software - Research, prototype and experiment with these models by using modeling languages such as Python; participate in the production level deployment - Create, enhance, and maintain technical documentation, and present to other Scientists, Product, and Engineering teams - Support project plans from a scientific perspective by managing product features, technical risks, milestones and launch plans - Influence organization's long-term roadmap and resourcing, and onboard new technologies onto the Science team's toolbox We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. Run A/B experiments, gather data, and perform statistical tests. Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | San Francisco, CA, USA | Santa Monica, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, MA, North Reading
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Research team at Amazon Robotics is seeking a passionate, hands-on Sr. Applied Scientist to help create the world’s first foundation model for a many-robot system. The focus of this position is how to predict the future state of our warehouses that feature a thousand or more mobile robots in constant motion making deliveries around the building. It includes designing, training, and deploying large-scale models using data from hundreds of warehouses under different operating conditions. This work spans from research such as alternative state representations of the many-robot system for training, to experimenting using simulation tools, to running large-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery - Proving/dis-proving strategies in offline data or in simulation * Production studies - Insights from production data or ad-hoc experimentation * Production implementation - Building key parts of deployed algorithms or models About the team You would join our multi-disciplinary science team that includes scientists with backgrounds in planning and scheduling, grasping and manipulation, machine learning, and operations research. We develop novel planning algorithms and machine learning methods and apply them to real-word robotic warehouses, including: - Planning and coordinating the paths of thousands of robots - Dynamic allocation and scheduling of tasks to thousands of robots - Learning how to adapt system behavior to varying operating conditions - Co-design of robotic logistics processes and the algorithms to optimize them Our team also serves as a hub to foster innovation and support scientists across Amazon Robotics. We also coordinate research engagements with academia, such as the Robotics section of the Amazon Research Awards. We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
US, WA, Bellevue
Inventory Planning and Control (IPC) is seeking an experienced senior data scientist to join its central science team. Our team owns the core decision models in the space of Buying, Placement, and Capacity Control. Our models decide when, where, and how much we should buy, flow, and hold inventories in our global fulfillment network to meet Amazon’s business goals and to make our customers happy. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars of world-wide for both our Retail and third-party seller business. Our systems are built entirely in-house, for which we constantly develop new technologies in automated inventory planning, prediction, optimization and simulation. Our systems operate at various scales, from real-time decision system that completes thousands of transactions per seconds, to large scale distributed system that optimizes the inventory decisions over millions of products simultaneously. IPC is also unique in that we are simultaneously developing the science and software of inventory optimization and solving some of the toughest computational/operational challenges in production. Our team members have an opportunity to be on the forefront of supply chain thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. Key job responsibilities Candidates will be responsible for developing causal, machine learning and data driven models to enhance the various inventory optimization engines that the team owns. The successful candidate should have solid hands-on experience in applying machine learning or causal inference models. They will also be responsible for conducting data driven analysis to facilitate strategic decisions. They require superior logical thinkers who are able to quickly approach large ambiguous problems and develop a practical plan to tackle. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving. They are able to measure and estimate risks, and constructively critique peer research. As a senior scientist, you will also help coach/mentor junior scientists in the team. A day in the life The IPC science team contains a large group of scientists with different technical expertise, who will help and collaborate with you on your projects. In this role, you will also work with our internal customers from the Retail, third-party seller and operations departments worldwide. You will understand their challenges and pain points, and help develop data driven solutions that improve how Amazon manages inventory in our global supply chain. You will work closely with the product managers, engineers and other scientists to turn science proposals into production implementation. About the team We are a team of scientists, product managers and engineers focusing on innovation. We promote experimentation and learn by building. We often tackle the hardest problem in the organization and work cross-functionally. We are at the center of developing inventory solutions to support the rapid growth of Amazon's store business. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members. Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit https://www.amazon.jobs/en/disability/us We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Chicago, IL, USA | Seattle, WA, USA
US, NY, New York
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Books Advertising team owns the worldwide advertising business for books, including advertiser and shopper experiences. They develop long-term vision and drive improvements for category relevance, auction dynamics, and ad serving. Additionally, they drive advertiser engagement, represent advertisers' voice, and provide operational support for our programs. This means the team owns all book-specific experiences for Sponsored Products, Sponsored Brands, Sponsored Display, Lock Screen Advertising, the Ads Console, and the Public API. As an Senior Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE ** Candidates can be based within proximity of NYC, Seattle, Toronto, Arlington County/Virginia (HQ2), or Santa Monica ** We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Santa Monica, CA, USA