Blanca Rodriguez, a professor of computational medicine at the University of Oxford
Blanca Rodriguez, a professor of computational medicine at the University of Oxford, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Blanca Rodriguez: Computational simulation of the human heart

The University of Oxford professor believes computer modeling and simulation are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

When Blanca Rodriguez began her exploration of the computational simulation of the human heart more than 20 years ago, the idea that an individual heart could be digitally recreated and analyzed using AI and machine learning to simulate which therapies would most effectively treat heart diseases was little more than a promising concept. 

Today, having devoted her career to the nascent field of computational cardiology, Rodriguez, a professor of computational medicine at the University of Oxford and a Wellcome Trust Senior Research Fellow, is convinced that computer modeling and simulation of the heart are poised to trigger major breakthroughs in the diagnosis, treatment, and care of cardiology patients.

Professor Blanca Rodriguez on how computer models can replace animal research

Computer simulation is hardly a new technology. In 1960, an Oxford biologist named Denis Noble began experimenting with mathematical models of the heart. Engineers in the automotive and aerospace industries have long embraced such simulation techniques, Rodriguez points out. All new vehicles and aircraft are designed with AI-based computer simulation as a key tool to virtually model each function, design element, and potential outcome. This concept, known as a digital twin, is now being embraced in the world of cardiology, and Rodriguez is a leading proponent.

“We’re doing the same thing with the heart, which is very challenging,” Rodriguez said. “We are gathering the clinical data of a patient and trying to build a virtual tool with those data. We want to simulate how that particular heart works, and simulate whether certain therapies or devices would work better than others so that we can understand how the diseases are affecting a particular patient in a particular way.”

Using AI and machine learning to crunch the massive amounts of clinical data, along with the ability to personalize that data for each individual patient, represents a significant breakthrough in computational cardiovascular science, Rodriguez said. As the technology is refined and improved, the ability to accommodate each patient’s unique physiology will inevitably lead to better and less invasive outcomes.

“We’re trying to understand and predict whether some therapies work better for certain patients and to understand disease conditions in a more personalized way,” Rodriguez explained.

In silico method

This “in silico” or computational methodology — as opposed to in vitro or in vivo — is likely to become the de facto method for drug development, and potentially for clinical treatment of heart patients in the future. Rather than having a generic, one-size-fits-all model, the digital twin will reveal the intricacies and disease conditions that impact each human being in a distinctive way.

A 2018 recipient of an AWS Machine Learning Research Award, Rodriguez’s immersion at the intersection of cardiology and computer science was hardly the career path she anticipated. A native of the Mediterranean port city of Valencia in Spain, Rodriguez received a degree in electrical engineering from the Universidad Politecnica de Valencia in 1997.

“I knew nothing about medicine or cardiology and nobody in my family was doing anything like this,” she said. But when she attended a talk about research in cardiology by Jose Jalife, a renowned University of Michigan arrhythmia specialist, she became “absolutely fascinated by the topic.” She immediately decided to pursue a PhD in computational medicine. She joined the Oxford faculty as a senior post-doctoral fellow in 2004 and has devoted her career to breakthrough research in the field.

Her work has attracted both academic and industry attention. Computer simulation is already having an impact in the medical and pharmaceutical communities. Until recently, drug companies have relied solely on animal testing for the most accurate and reliable way to test new drugs for effectiveness and side effects. According to research, animal testing yields a 75 to 85 percent accuracy rate and sometimes leads to drugs being withdrawn from the market due to safety issues.

The promise of computational models

Computational models of human heart cells are already providing much higher accuracy levels, with the added benefit of reducing the controversial use of animal testing, improving drug safety, and having greater likelihood of predicting adverse drug reactions in humans. 

“For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models, and that’s what has made industry very interested,” Rodriguez said. “We can replace some of the animal experiments and lower the costs. Plus, it’s fast.”

For the prediction of cardio drug toxicity or side effects on the heart, we have already reached 90 percent accuracy with our computer models.
Blanca Rodriguez

To that end, Rodriguez’s lab at Oxford has been collaborating not only with clinicians but also with the pharmaceutical industry, which is intrigued by the promise of computer models to test drug therapies prior to clinical trials. She is working with such giants at GSK, AstraZeneca, Sanofi, UCB, and Merck.

Gaining this kind of industry credibility is one of the most significant outcomes, according to Rodriguez, because several years ago these companies “were very skeptical. They had little knowledge of these computational methods so we had to collaborate with them and make the software really easy to use,” she explained. “We worked not only on the computational aspects, but also the human aspects to build credibility for these methods. That was always a challenge.” 

Using these techniques, drug makers can determine early on whether a certain drug has side effects. “Our knowledge of the human heart is such that we can build mathematical equations on the data we have and embed those equations in software programs that we can use to simulate what a drug is doing to the human heart,” she explained.

In addition, the work has attracted the attention and cooperation of important regulatory agencies such as the US Food and Drug Administration and various European regulators. Rodriguez’s Oxford lab is already jointly publishing white papers with such agencies.

The AWS Machine Learning Research Award has been a significant addition to the available resources for her group, Rodriguez said. “The MLRA has been instrumental for our work in generating methodological advances and demonstrating the potential of in silico clinical trials,” Rodriguez said. “We have published important papers describing the development of mathematical models of the human heart. These are being used for drug testing in academia, industry and regulatory agencies such as the FDA.”

Faster (and better) data analysis

In recent years, breakthroughs in AI and ML techniques have enabled much greater effectiveness using computational simulation by dramatically accelerating the speed of large dataset analysis. Images of thousands of human hearts can be analyzed in nanoseconds and, simultaneously, new biomarkers emerge that more accurately predict patient outcomes and preferred therapies.

These AI programs also enable the identification of subgroups of patients who share similar features but might have different conditions. People who have had a heart attack, for example, tend to be lumped together in one massive group. “But actually, the manifestation of the heart attack is very different in individual patients. AI and machine learning can help in identifying subgroups of patients who share the same features and could potentially benefit from a particular therapy,” Rodriguez said.

Among the challenges for AI and machine learning researchers is gaining access to huge databases of clinical data in order to test these models and train the algorithms. At Oxford, Rodriguez’s team has access to the massive UK Biobank, a large-scale biomedical database and research resource, and some hospitals are already sharing digitized clinical data. But due to privacy issues and cost constraints, vital data sets like these remain elusive.

“Our work depends on access to good datasets,” Rodriguez pointed out. “Not all hospitals are gathering data and there are a lot of ethical issues involved. Another challenge is finding candidates to do the research, particularly computer scientists who are able to understand medicine. People need to be both technically talented but also aware and knowledgeable about the clinical challenges.”

Already seeing the impact of her work, Rodriguez said the technology can accelerate the development and implementation of important cardiovascular therapies, making those therapies more effective and safer for patients. The next decade promises to hold dramatic advances. “I don’t think it’s a dream. It’s happening,” she declared. “It’s just going to take time.”

Research areas

Related content

US, WA, Bellevue
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Diego
We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to tackle challenging problems across diverse compliance domains. We leverage and train state-of-the-art multi-modal and large-language-models (LLMs) to detect illegal and unsafe products across the Amazon catalog. We work on machine learning problems for multi-modal classification, intent detection, information retrieval, anomaly and fraud detection, and generative AI. This is an exciting and challenging position to deliver scientific innovations into production systems at Amazon-scale to make immediate, meaningful customer impacts while also pursuing ambitious, long-term research. You will work in a highly collaborative environment where you can analyze and process large amounts of image, text and tabular data. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. There will be something new to learn every day as we work in an environment with rapidly evolving regulations and adversarial actors looking to outwit your best ideas. Key job responsibilities • Design and evaluate state-of-the-art algorithms and approaches in multi-modal classification, large language models (LLMs), intent detection, information retrieval, anomaly and fraud detection, and generative AI • Translate product and CX requirements into measurable science problems and metrics. • Collaborate with product and tech partners and customers to validate hypothesis, drive adoption, and increase business impact • Key author in writing high quality scientific papers in internal and external peer-reviewed conferences. A day in the life - Understanding customer problems, project timelines, and team/project mechanisms - Proposing science formulations and brainstorming ideas with team to solve business problems - Writing code, and running experiments with re-usable science libraries - Reviewing labels and audit results with investigators and operations associates - Sharing science results with science, product and tech partners and customers - Writing science papers for submission to peer-review venues, and reviewing science papers from other scientists in the team. - Contributing to team retrospectives for continuous improvements - Driving science research collaborations and attending study groups with scientists across Amazon About the team We are a team of applied scientists building AI/ML solutions to make Amazon Earth’s most trusted shopping destination for safe and compliant products.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.