Preserving privacy in analyses of textual data

New "Mad Libs" technique for replacing words in individual sentences is grounded in metric differential privacy.

Amazon prides itself on being the most customer-centric company on earth. That means maintaining the highest possible standards of both security and privacy when dealing with customer data.

Next month, at the ACM Web Search and Data Mining (WSDM) Conference, my colleagues and I will describe a way to protect privacy during large-scale analyses of textual data supplied by customers. Our method works by, essentially, re-phrasing the customer-supplied text and basing analysis on the new phrasing, rather than on the customers’ own language.

Differential privacy

Questions about data privacy are frequently met with the answer “It’s anonymized! Identifying features have been scrubbed!” However, studies such as this one from MIT show that attackers can deanonymize data by correlating it with “side information” from other data sources.

Differential privacy is a way to calculate the probability that analysis of a data set will leak information about any individual in that data set. Within the differential-privacy framework, protecting privacy usually means adding noise to a data set, to make data related to specific individuals more difficult to trace. Adding noise often means a loss of accuracy in data analyses, and differential privacy also provides a way to quantify the trade-off between privacy and accuracy.

Embedding space-phone.png
The researchers' technique adds noise (green) to the embedding of a word (orange) from a textual data set, producing a new point in the embedding space. Then it finds the valid embedding nearest that point — in this case, the embedding for the word "mobile".
Stacy Reilly

Let’s say that you have a data set of cell phone location traces for a particular city, and you want to estimate the residents’ average commute time. The data set contains (anonymized) information about specific individuals, but the analyst is interested only in an aggregate figure — 37 minutes, say.

Differential privacy provides a statistical assurance that the aggregate figure will not leak information about which individuals are in the data set. Say there are two data sets that are identical, except that one includes Alice’s data and one doesn’t. Differential privacy says that, given the result of an analysis — the aggregate figure — the probabilities that either of the two data sets was the basis of the analysis should be virtually identical.

Of course, the smaller the data set, the more difficult this standard is to meet. If the data set contains nine people with 15-minute commutes and one person, Bob, with a two-hour commute, the average commute time is very different for data sets that do and do not contain Bob. Someone with side information — that Bob frequently posts Instagram photos from a location two hours outside the city — could easily determine whether Bob is included in the data set.

Adding noise to the data can blur the distinctions between analyses performed on slightly different data sets, but it can also reduce the utility of the analyses. A very small data set might require the addition of so much noise that analyses become essentially meaningless. But the expectation is that as the size of the data set grows, the trade-off between utility and privacy becomes more manageable.

Privacy in the space of word embeddings

In the field of natural-language processing, a word embedding is a mapping from the space of words into a vector space, i.e., the space of real numbers. Often, this mapping depends on the frequency with which words co-occur with each other, so that related words tend to cluster near each other in the space:

So how can we go about preserving privacy in such spaces? One possibility is to modify the original text such that its author cannot be identified, but the semantics are preserved. This means adding noise in the space of word embeddings. The result is sort of like a game of Mad Libs, where certain words are removed from a sentence and replaced with others.

While we can apply standard differential privacy in the space of word embeddings, doing so would lead to poor performance. Differential privacy requires that any data point in a data set can be replaced by any other, without an appreciable effect on the results of aggregate analyses. But we want to cast a narrower net, replacing a given data point only with one that lies near it in the semantic space. Hence we consider a more general definition known as “metric” differential privacy.

Metric differential privacy

I said that differential privacy requires that the probabilities that a statistic is derived from either of two data sets be virtually identical. But what does “virtually” mean? With differential privacy, the allowable difference between the probabilities is controlled by a parameter, epsilon, which the analyst must determine in advance. With metric differential privacy, the parameter is epsilon times the distance between the two data sets, according to some distance metric: the more similar the data sets are, the harder they must be to distinguish.

Initially, metric differential privacy was an attempt to extend the principle of differential privacy to location data. Protecting privacy means adding noise, but ideally, the noise should be added in a way that preserves aggregate statistics. With location data, that means overwriting particular locations with locations that aren’t too far away. Hence the need for a distance metric.

The application to embedded linguistic data should be clear. But there’s a subtle difference. With location data, adding noise to a location always produces a valid location — a point somewhere on the earth’s surface. Adding noise to a word embedding produces a new point in the representational space, but it’s probably not the location of a valid word embedding. So once we’ve identified such a point, we perform a search to find the nearest valid embedding. Sometimes the nearest valid embedding will be the original word itself; in that case, the original word is not overwritten.

Hyperboloid.png
A two-dimensional hyperboloid.

In our paper, we analyze the privacy implications of different choices of epsilon value. In particular, we consider, for a given epsilon value, the likelihood that any given word in a string of words will be overwritten and the number of semantically related words that fall within a fixed distance of each word in the embedding space. This enables us to make some initial arguments about what practical epsilon values might be.

Hyperbolic space

In November 2019, at the IEEE International Conference on Data Mining (ICDM), we presented a paper that, although it appeared first, is in fact a follow-up to our WSDM paper. In that paper, we describe an extension of our work on metric differential privacy to hyperbolic space.

The word-embedding space we describe in the WSDM paper is the standard Euclidean space. A two-dimensional Euclidean space is a plane. A two-dimensional hyperbolic space, by contrast, is curved.

Poincare disc.png
A two-dimensional projection of word embeddings in a hyperbolic space. More-general concepts cluster toward the center, more specific concepts toward the edges.

In hyperbolic space, as in Euclidean space, distance between embeddings indicates semantic similarity. But hyperbolic spaces have an additional degree of representational capacity: the different curvature of the space at different locations can indicate where embeddings fall in a semantic hierarchy.

So, for instance, the embeddings of the words “ibuprofen”, “medication”, and “drug” may lie near each other in the space, but their positions along the curve indicate which of them are more specific terms and which more general. This allows us to ensure that we are substituting more general terms for more specific ones, which makes personal data harder to extract.

In experiments, we applied the same metric-differential-privacy framework to hyperbolic spaces that we had applied to Euclidean space and observed 20-fold greater guarantees on expected privacy in the worst case.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 6-month Co-Op to join AR full-time (40 hours/week) from January 9, 2023 to June 23, 2023. Amazon Robotics co-op opportunity will be Hybrid (2-3 days onsite) and based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.Key job responsibilitiesWe are seeking data scientist co-ops to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.
US, WA, Seattle
Job summaryDo you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day.Major responsibilities Use statistical and machine learning techniques to create scalable risk management systemsLearning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trendsDesign, development and evaluation of highly innovative models for risk managementWorking closely with software engineering teams to drive real-time model implementations and new feature creationsWorking closely with operations staff to optimize risk management operations,Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationTracking general business activity and providing clear, compelling management reporting on a regular basisResearch and implement novel machine learning and statistical approaches
US, CA, Palo Alto
Job summaryAmazon is investing heavily in building a customer centric, world class advertising business across its many unique audio, video, and display surfaces. We are looking for an Applied Scientist who has a deep passion for building machine-learning solutions in our advertising decision system. In this role, you will be on the cutting edge of developing monetization solutions for Live TV, Connected TV and streaming Audio. These are nascent, high growth areas, where advertising monetization is an important, fully integrated part of the core strategy for each business.Key job responsibilitiesRapidly design, prototype and test machine learning algorithms for optimizing advertising reach, frequency and return on advertising spendBuild systems that extract and process volumes of disparate data using a variety of econometric and machine learning approaches. These systems should be designed to scale with exponential growth in data and run continuously.Leverage knowledge of advanced software system and algorithm development to build our measurement and optimization engine.Contribute intellectual property through patent generation.Functionally decompose complex problems into simple, straight-forward solutions.Understand system inter-dependencies and limitations as well as analytic inter-dependencies to build efficient solutions.A day in the lifeAs an Applied Scientist, you will be tasked with leading innovations in machine learning algorithms to deliver ads across platforms influencing product features and architectural choices for decision making systems. You will need to work with data scientists to invent elegant metrics and associated measurement models, and develop algorithms that help advertisers test and learn the impact of advertising strategies across channels on these metrics while ensuring a great customer experience.
US, WA, Seattle
Job summaryThe Amazon Devices Demand Science team is looking for an energetic, focused and skilled, truly innovative and technically strong research scientist with a background in data analytics, machine learning, data science, decision science and statistical modeling/analysis to help with demand forecasting and planning for the entire Amazon device family of products, services and accessories.Amazon is looking for a talented Senior Research Scientist to join the Amazon Devices team. We materially impact Amazon’s device businesses by forecasting demand, influencing promotion pricing and identifying optimal inventory allocation of all Amazon Devices using ML, operations research and big data.Key job responsibilitiesIn this role, you will have an opportunity to both develop advanced scientific solutions and drive critical customer and business impacts. You will play a key role to drive end-to-end solutions from understanding our business requirements, exploring a large amount of historical data and ML models, building prototypes and exploring conceptually new solutions, to working with partner teams for prod deployment. You will collaborate closely with scientists, engineering peers as well as business stakeholders. You will be responsible for researching, prototyping, experimenting, analyzing predictive models and developing artificial intelligence-enabled automation solutions.As a Senior Research Scientist, you will:• research and develop new methodologies for demand forecasting, alarms, alerts and automation.• apply your advanced data analytics, machine learning skills to solve complex demand planning and allocation problems.• work closely with stakeholders and translate data-driven findings into actionable insights.• improve upon existing methodologies by adding new data sources and implementing model enhancements.• create and track accuracy and performance metrics.• create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.• drive best practices on the team; mentor and guide junior members to achieve their career growth potential.A day in the lifeThis role will be a Problem Solver, Doer, Detail Oriented, Communicator and Influencer.Problem Solver: Ability to utilize exceptional modeling and problem-solving skills to work through different challenges in ambiguous situations.Doer: You’ve successfully delivered end-to-end operations research projects, working through conflicting viewpoints and data limitations.Detail Oriented: You have an enviable level of attention to details.Communicator: Ability to communicate analytical results to senior leaders, and peers.Influencer: Innovative scientist with the ability to identify opportunities and develop novel modeling approaches in a fast-paced and ever-changing environment, and gain support with data and storytelling.About the teamWe are a growing team continues to operate in "startup" mode to prove new business ideas, while strengthening our core ML platforms.This role is available for the following locations: Seattle/Bellevue, Washington; Arlington, Virginia (HQ2); Denver, Colorado; Bay Area/Los Angeles Metro, California; and Nashville, Tennessee. (other US Locations can be discussed further)