Customer-obsessed science


Research areas
-
September 2, 2025Audible's ML algorithms connect users directly to relevant titles, reducing the number of purchase steps for millions of daily users.
-
Featured news
-
Findings of EMNLP 20242024Large Language Models (LLMs) are widely used in both industry and academia for various tasks, yet evaluating the consistency of generated text responses continues to be a challenge. Traditional metrics like ROUGE and BLEU show a weak correlation with human judgment. More sophisticated metrics using Natural Language Inference (NLI) have shown improved correlations but are complex to implement, require domain-specific
-
CIKM 2024 Workshop on Generative AI for E-commerce2024Large language models (LLMs) offer substantial potential for automating labeling tasks, showcasing robust zero-shot performance across diverse classification tasks. The LLM-generated reasons that accompany these classifications contain signals about the quality of the classifications. Estimates of quality of these reasons can, in essence, be used to detect potentially incorrect predictions. Conventional
-
2024Large Language Models (LLMs) have the promise to revolutionize computing broadly, but their complexity and extensive training data also expose significant privacy vulnerabilities. One of the simplest privacy risks associated with LLMs is their susceptibility to membership inference attacks (MIAs), wherein an adversary aims to determine whether a specific data point was part of the model’s training set.
-
RecSys 2024 Workshop on Strategic and Utility-aware Recommendation2024Accurate attribute extraction is critical for beauty product recommendations and building trust with customers. This remains an open problem, as existing solutions are often unreliable and incomplete. We present a system to extract beauty-specific attributes using end-to-end supervised learning based on beauty product ingredients. A key insight to our system is a novel energy-based implicit model architecture
-
CIKM 2024 Workshop on Generative AI for E-commerce2024We introduce VARM, variant relationship matcher strategy, to identify pairs of variant products in e-commerce catalogs. Traditional definitions of entity resolution are concerned with whether product mentions refer to the same underlying product. However, this fails to capture product relationships that are critical for e-commerce applications, such as having similar, but not identical, products listed
Conferences
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all