Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
ICML 20212021Bayesian optimization (BO) is among the most effective and widely-used blackbox optimization methods. BO proposes solutions according to an explore-exploit trade-off criterion encoded in an acquisition function, many of which are computed from the posterior predictive of a probabilistic surrogate model. Prevalent among these is the expected improvement (EI). The need to ensure analytical tractability of
-
Speech Synthesis Workshop (SSW11) 20212021Voice Conversion (VC) is a technique that aims to transform the non-linguistic information of a source utterance to change the perceived identity of the speaker. While there is a rich literature on VC, most proposed methods are trained and evaluated on clean speech recordings. However, many acoustic environments are noisy and reverberant, severely restricting the applicability of popular VC methods to such
-
ICASSP 20212021We introduce a novel acoustic echo cancellation framework for systems where the loudspeaker and the microphone array are not synchronized. We consider the problem in the most general form where the loss of synchronization is time-varying. The proposed system is linear and it utilizes microphone array beamforming for echo cancellation. It is shown to provide significant improvement over standard echo cancellation
-
KDD 20212021Graph neural networks (GNNs) are powerful tools for learning from graph data and are widely used in various applications such as social network recommendation, fraud detection, and graph search. The graphs in these applications are typically large, usually containing hundreds of millions of nodes. Training GNN models on such large graphs efficiently remains a big challenge. Despite a number of sampling-based
-
ICML 20212021Link prediction methods are frequently applied in recommender systems, e.g., to suggest citations for academic papers or friends in social networks. However, exposure bias can arise when users are systematically underexposed to certain relevant items. For example, in citation networks, authors might be more likely to encounter papers from their own field and thus cite them preferentially. This bias can
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all