Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
NeurIPS 2021 Workshop on Machine Learning and the Physical Sciences2021The transport of traffic flow can be modeled by the advection equation. Finite difference and finite volumes methods have been used to numerically solve this hyperbolic equation on a mesh. Advection has also been modeled discretely on directed graphs using the graph advection operator [4, 18]. In this paper, we first show that we can reformulate this graph advection operator as a finite difference scheme
-
ICML 2021 Time Series Workshop2021We study a recent class of models which uses graph neural networks (GNNs) to improve forecasting in multivariate time series. The core assumption behind these models is that there is a latent graph between the time series (nodes) that governs the evolution of the multivariate time series. By parameterizing a graph in a differentiable way, the models aim to improve forecasting quality. We compare four recent
-
NeurIPS 20212021Large-scale time series panels have become ubiquitous over the last years in areas such as retail, operational metrics, IoT, and medical domain (to name only a few). This has resulted in a need for forecasting techniques that effectively leverage all available data by learning across all time series in each panel. Among the desirable properties of forecasting techniques, being able to generate probabilistic
-
NeurIPS 20212021Extreme multi-label text classification (XMC) seeks to find relevant labels from an extreme large label collection for a given text input. Many real-world applications can be formulated as XMC problems, such as recommendation systems, document tagging and semantic search. Recently, transformer based XMC methods, such as XTransformer and LightXML, have shown significant improvement over other XMC methods
-
EMNLP 2021 Workshop on Novel Ideas in Learning-to-Learn through Interaction2021Language-guided robots performing home and office tasks must navigate in and interact with the world. Grounding language instructions against visual observations and actions to take in an environment is an open challenge. We present Embodied BERT (EmBERT), a transformer-based model which can attend to high-dimensional, multi-modal inputs across long temporal horizons for language-conditioned task completion
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all