Amazon pushes the boundaries of extreme multilabel classification

Two NeurIPS papers examine the assignment of the same label to multiple categories, fast training of Transformer-based models.

In the past few years, we’ve published a number of papers about extreme multilabel classification (XMC), or classifying input data when the number of candidate labels is huge.

Partition model.png
Example of a label-partitioning model.

Earlier this year, we publicly released the code for our own XMC framework, PECOS, which makes XMC more efficient through label partitioning. With label partitioning, labels are first grouped into clusters, and a matcher model is trained to assign inputs to clusters. Then, a ranker is trained to select a single label from the designated group for a given input.

At this year’s Conference on Neural Information Processing Systems (NeurIPS), we’re presenting two papers that extend the range of label-partitioning frameworks — including but not limited to PECOS — and improve their classification accuracy.

In “Label disentanglement in partition-based extreme multilabel classification”, we consider the case in which the same label belongs to multiple clusters: for instance, the label “apple” might properly belong to one cluster designating computing devices and another designating fruits. We demonstrate a method for assigning labels to multiple clusters that improves classification accuracy with a negligible effect on efficiency.

In “Fast multi-resolution transformer fine-tuning for extreme multi-label text classification”, we propose a new method for training Transformer-based matching models that reduces training time by 95% while actually increasing accuracy.

XRTransformer.png
Training (left) of the Transformer-based matching model (XR-Transformer) begins with a preliminary hierarchical label tree (HLT). For each layer of the tree, we jointly train a Transformer-based encoder and a linear ranker (Ŵ). Once the Transformer-based encoder has been trained, we train new linear rankers (W), which are used at inference time (right).

Label disentanglement

PECOS is a flexible framework that allows variation in the implementation of XMC models, and one common approach to label clustering is to use a hierarchical tree, where the labels are first divided into a few, coarse-grained groups, then successively subdivided into finer- and finer-grained groups. The matcher is then trained to traverse the tree to find the lowest-level label cluster.

Typically, the tree is constructed using some fixed measure of label similarity, such as term frequency–inverse document frequency (TD-IDF), which identifies terms that predominate in a given text relative to a larger corpus of texts. In most existing label-partitioning approaches, each label ends up in exactly one low-level cluster.

In addition to the assignment of individual labels to multiple clusters, one of the novelties of our work is that the hierarchical tree itself is learned from data in a supervised manner.

To ensure that every label is assigned to all the clusters to which it properly belongs, we could simply assign every label to every cluster. But of course, that would waste the advantage of doing label partitioning in the first place.

Instead, we limit the number of clusters that a given label can be assigned to — in our experiments, we varied the limit from 1 to 6 — and then treat the cluster assignment as an optimization problem. That is, we learn which assignment of labels to which clusters maximizes the performance of the XMC model.

At the beginning of the training procedure, we create a provisional hierarchical tree using TF-IDF. Then we train a matcher on that tree. On the basis of that matcher, we then reassign labels to multiple clusters in a way that maximizes classification accuracy.

This process could be repeated as many times as necessary, but in our experiments, we found that one repetition was enough to secure most of the approach’s performance gains.

In our experiments, we compared our approach to nine earlier approaches, using six metrics across four datasets. Of the resulting 24 measurements, our approach achieved the highest score on 21, second place on two.

Multiresolution Transformer fine-tuning

PECOS comes with a number of built-in tools for performing all three steps in our XMC pipeline: label partitioning, matching, and ranking. At KDD 2020, we described our Transformer-based approach to matching, X-Transformer, which can be used with PECOS or with other XMC approaches.

The initial PECOS release also came with a recursive linear matching model, XR-linear, which learns to match inputs to clusters using the same iterative strategy that we use to build hierarchical trees: first XR-linear performs a coarse-grained matching, then a finer-grained matching, and so on. The “R” in XR-linear stands for “recursive”.

In our second NeurIPS paper, we combine these two approaches to create XR-Transformer, a recursive, Transformer-based matcher. On the Amazon-3M dataset, a standard benchmark in the XMC field that consists of products sorted into three million product categories (the label space), training an X-Transformer matcher takes 23 days on eight GPUs; training an XR-Transformer matcher takes only 29 hours — with a significant improvement in accuracy.

To train an XR-Transformer matcher, we begin as we did in the label disentanglement work, with a hierarchical label tree based on TF-IDF features. For each layer of the tree, we jointly train a Transformer-based encoder and a linear ranker, which uses both the Transformer model embedding and the TF-IDF features as the basis for assigning an input to a particular cluster in the next layer down the tree.

Once the Transformer-based encoder has been trained at every level of the tree, we concatenate its final label embeddings with the TF-IDF features and, on that basis, produce a new label tree. Then, for each level of the tree, we train new linear rankers with the concatenated features as inputs.

We tested our approach on six public datasets, whose output space ranged from about 4,000 labels to the three million of Amazon-3M. We compared our approach to 11 predecessors on three metrics (precision at 1, 3, and 5, or the number of relevant results among the top one, three, and five labels returned).

On the three datasets with 4,000 to 31,000 labels, XR-Transformer achieved the highest score on five of nine measures. But on the three datasets with 500,000 or more labels, it achieved the highest scores across the board, by a significant margin.

Related content

US, MD, Annapolis Junction
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) methods. We build models for text, image, video, audio, and multi-modal use cases, using traditional or generative approaches to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position may require local travel up to 25% It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Arlington
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? Amazon Web Services (AWS) Professional Services (ProServe) is looking for Data Scientists who like helping U.S. Federal agencies implement innovative cloud computing solutions and solve technical problems using state-of-the-art language models in the cloud. AWS ProServe engages in a wide variety of projects for customers and partners, providing collective experience from across the AWS customer base and are obsessed about strong success for the Customer. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. At AWS, we're hiring experienced data scientists with a background in NLP, generative AI, and document processing to help our customers understand, plan, and implement best practices around leveraging these technologies within their AWS cloud environments. Our consultants deliver proof-of-concept projects, reusable artifacts, reference architectures, and lead implementation projects to assist organizations in harnessing the power of their data and unlocking the potential of advanced NLP and AI capabilities. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have deep expertise in NLP/NLU, generative AI, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. It is expected to work from one of the above locations (or customer sites) at least 1+ days in a week. This is not a remote position. You are expected to be in the office or with customers as needed. This position requires that the candidate selected be a US Citizen and obtain and maintain a security clearance at the TS/SCI with polygraph level. Upon start, the selected candidate will be sponsored for a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities In this role, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate cutting-edge generative AI solutions to address real-world challenges. - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Provide expertise and guidance in generative AI and document processing infrastructure, design, implementation, and optimization. - Maintain domain knowledge and expertise in generative AI, NLP, and NLU. - Architect and build large-scale solutions. - Build technical solutions that are secure, maintainable, scalable, reliable, performant, and cost-effective. - Identify and prepare metrics and reports for the internal team and for customers to delineate the value of their solution to the customer. - Identify, mitigate and communicate risks related to solution and service constraints by making technical trade-offs. - Participate in growing their team’s skills and help mentor internal and customer team members. - Provide guidance on the people, organizational, security and compliance aspects of AI/ML transformations for the customer. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Amazon's AGI Web & Knowledge Services group is seeking a passionate, talented, and inventive Applied Scientist to lead the development of industry-leading structured Information retrieval systems. As part of our cutting-edge AGI-SIR team, you will play a pivotal role in developing efficient AI solutions for Knowledge Graphs, Graph Search and Question Answering Systems. In this role, your work will focus on creating scalable and efficient AI-driven technologies that push the boundaries of information retrieval. You will work on a broad range of problems, from low-level data processing to the development of novel retrieval models, leveraging state-of-the-art machine learning methods. Key job responsibilities - Lead the development of advanced algorithms for knowledge graphs, graph search and question answering systems, guiding the team in solving complex problems and setting technical direction. - Design models that address customer needs, making informed trade-offs to balance accuracy, efficiency, and user experience. - Collaborate with engineering teams to implement successful models into scalable, reliable Amazon production systems. - Present results to technical and business audiences, ensuring clarity, statistical rigor, and relevance to business goals. - Establish and uphold high scientific and engineering standards, driving best practices across the team. - Promote a culture of experimentation and continuous learning within Amazon’s applied science community.
LU, Luxembourg
Are you interested in building state-of-the-art machine learning systems for the most complex, and fastest growing, transportation network in the world? If so, Amazon has the most exciting, and never-before-seen, challenges at this scale (including those in sustainability, e.g. how to reach net zero carbon by 2040). Amazon’s transportation systems get millions of packages to customers worldwide faster and cheaper while providing world class customer experience – from online checkout, to shipment planning, fulfillment, and delivery. Our software systems include services that use tens of thousands of signals every second to make business decisions impacting billions of dollars a year, that integrate with a network of small and large carriers worldwide, that manage business rules for millions of unique products, and that improve experience of over hundreds of millions of online shoppers. As part of this team you will focus on the development and research of machine learning solutions and algorithms for core planning systems, as well as for other applications within Amazon Transportation Services, and impact the future of the Amazon delivery network. Current research and areas of work within our team include machine learning forecast, uncertainty quantification, planning systems, model interpretability, graph neural nets, among others. We are looking for a Machine Learning Scientist with a strong academic background in the areas of machine learning, time series forecasting, and/or optimization. At Amazon, we strive to continue being the most customer-centric company on earth. To stay there and continue improving, we need exceptionally talented, bright, and driven people. If you'd like to help us build the place to find and buy anything online, and deliver in the most efficient and greenest way possible, this is your chance to make history. About the team The EU ATS Science and Technology (SnT) team owns scalable algorithms, models and systems that improve customer experience in middle-mile. We work backwards from Amazon's customers aiming to make transportation faster, cheaper, safer, more reliable and ecologically sustainable.
US, WA, Bellevue
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion-dollar global business. At Amazon Business, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech and retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations re-imagine buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes, unlocking our potential worldwide. Amazon Business Supplier Experience Science team is looking for Sr. Applied Scientist to excel at product and service pricing, selection, forecast and optimization. Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting, selection additions and operations optimization. Amazon Business is a fast growing business sector. We need leaders who can think big and drive big vision into a reality. Please come to work with us if you are result driven, think big, and want to have fun and make a history. You will build the science models and the supporting structures needed to analyze, dive deep, and innovate the pricing strategies. You will also have the opportunity to present findings to cross functional team partners to drive improvements. You will work closely with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to solve challenging problems. You need be comfortable using intellect, curiosity and technical ability to develop innovative solutions to business problems. You need learn different aspects of the business and understand how to apply science and analytics to solve high impact business problems. You will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. The ideal candidate will have leadership skills, proven ability to develop, enhance, automate, and manage science models from end to end. The ideal candidate will have data mining and modeling skills and will be comfortable facilitating idea creation and working from concept through to execution. The ideal candidate must have the ability to manage medium-scale automation and modeling projects, identify requirements and build methodology and tools that are mathematically grounded but also explainable operationally, apply technical skills allowing the models to adapt to changing attributes. Key job responsibilities • Contribute to supplier operations strategy development based on science models and data analysis • Develop models to measure long term impact of seller behaviors • Collaborate with product and engineering teams both within and outside of AB to launch selection and operations systems based on science and data. • Use optimization, statistical, machine learning and analytical techniques to create scalable solutions for business problems. • Design, development and evaluation of highly innovative models for forecast, optimization and experimentation. • Work and collaborate effectively with product managers and software engineering teams to build algorithms and models and integrate successful models and algorithms in production systems. • Contribute to Amazon's Intellectual Property through patents and internal and external publications A day in the life The scientist will develop, enhance, automate, and manage science models from end to end. The scientist will also have the opportunity to present findings to cross functional team partners to drive improvements. The scientist will work with other Applied/Research/Data Scientists, Economists, Data Engineers, Software Development Engineers, Program Managers and Business Partners to build analytical and science models. The scientist will be expected to provide clear and concise explanation to results and approaches as well as provide opinion and guidance on problem solving. About the team Amazon Business (AB) represents an incredible opportunity to address a vast new market segment and customer base for Amazon. We are focused on building solutions that enable B2B customers to find, research, and buy products and services across multiple devices and marketplaces. The Amazon Business Science team owns the science and analytics for key AB problems including price setting and selection additions.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Research Scientist, to lead the development of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Research Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - Drive applied science projects in machine learning end-to-end: from ideation over prototyping to launch. For example, starting from deep scientific thinking about new ways to support customers’ journeys through discovery, you analyze how customers discover, review and purchase Private Brands to innovate marketing and merchandising strategies. - Propose viable ideas to advance models and algorithms, with supporting argument, experiment, and eventually preliminary results. - Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions. - Present results, reports, and data insights to both technical and business leadership. - Constructively critique peer research and mentor junior scientists and engineers. - Innovate and contribute to Amazon’s science community and external research communities.