Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
The Web Conference 20222022Complementary product recommendation aims at providing product suggestions that are often bought together to serve a joint demand. Existing work mainly focuses on modeling product relationships at a population level, but does not consider personalized preferences of different customers. In this paper, we propose a framework for personalized complementary product recommendation capable of recommending products
-
ICASSP 20222022Automatic dubbing (AD) is among the machine translation (MT) use cases where translations should match a given length to allow for synchronicity between source and target speech. For neural MT, generating translations of length close to the source length (e.g. within ±10% in character count), while preserving quality is a challenging task. Controlling MT output length comes at a cost to translation quality
-
VLDB 20222022Although product graphs (PGs) have gained increasing attention in recent years for their successful applications in product search and recommendations, the extensive power of PGs can be limited by the inevitable involvement of various kinds of errors. Thus, it is critical to validate the correctness of triples in PGs to improve their reliability. Knowledge graph (KG) embedding methods have strong error
-
ICASSP 20222022Generic pre-trained speech and text representations promise to reduce the need for large labeled datasets on specific speech and language tasks. However, it is not clear how to effectively adapt these representations for speech emotion recognition. Recent public benchmarks show the efficacy of several popular self-supervised speech representations for emotion classification. In this study, we show that
-
ICASSP 20222022Household speaker identification with few enrollment utterances is an important yet challenging problem, especially when household members share similar voice characteristics and room acoustics. A common embedding space learned from a large number of speakers is not universally applicable for the optimal identification of every speaker in a household. In this work, we first formulate household speaker identification
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all