Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
CHI 20222022Conversational Agents (CAs) such as Apple’s Siri and Amazon’s Alexa are well-suited for task-oriented interactions (“Call Jason”), but other interaction types are often beyond their capabilities. One notable example is playful requests: for example, people ask their CAs personal questions (“What’s your favorite color?”) or joke with them, sometimes at their expense (“Find Nemo”). Failing to recognize playfulness
-
AISTATS 20222022The investigation of the question “which treatment has a causal effect on a target variable?” is of particular relevance in a large number of scientific disciplines. This challenging task becomes even more difficult if not all treatment variables were or even cannot be observed jointly with the target variable. In this paper, we discuss how causal knowledge can be obtained without having observed all variables
-
ICASSP 20222022Neural speech synthesis models can synthesize high quality speech but typically require a high computational complexity to do so. In previous work, we introduced LPCNet, which uses linear prediction to significantly reduce the complexity of neural synthesis. In this work, we further improve the efficiency of LPCNet – targeting both algorithmic and computational improvements – to make it usable on a wide
-
ICASSP 20222022Singing voice separation aims to separate music into vocals and accompaniment components. One of the major constraints for the task is the limited amount of training data with separated vocals. Data augmentation techniques such as random source mixing have been shown to make better use of existing data and mildly improve model performance. We propose a novel data augmentation technique, chromagram-based
-
CVPR 20222022Video Instance Segmentation (VIS) aims to simultaneously classify, segment, and track multiple object instances in videos. Recent clip-level VIS takes a short video clip as input each time showing stronger performance than frame-level VIS (tracking-by-segmentation), as more temporal context from multiple frames is utilized. Yet, most clip-level methods are neither end-to-end learnable nor real-time. These
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all