Customer-obsessed science
Research areas
-
November 28, 20254 min readLarge language models are increasing the accuracy, reliability, and consistency of the product catalogue at scale.
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
Featured news
-
ICML 20222022Recently, deep neural networks have gained increasing popularity in the field of time series forecasting. A primary reason for their success is their ability to effectively capture complex temporal dynamics across multiple related time series. The advantages of these deep forecasters only start to emerge in the presence of a sufficient amount of data. This poses a challenge for typical forecasting problems
-
ICML 20222022We introduce an approach to counterfactual inference based on merging information from multiple datasets. We consider a causal reformulation of the statistical marginal problem: given a collection of marginal structural causal models (SCMs) over distinct but overlapping sets of variables, determine the set of joint SCMs that are counterfactually consistent with the marginal ones. We formalise this approach
-
ICML 20222022High-quality data plays a central role in ensuring the accuracy of policy evaluation. This paper initiates the study of efficient and safe data collection for bandit policy evaluation. We formulate the problem and investigate its several representative variants. For each variant, we analyze its statistical properties, derive the corresponding exploration policy, and design an efficient algorithm for computing
-
ICML 20222022In this paper, we propose a natural notion of individual preference (IP) stability for clustering, which asks that every data point, on average, is closer to the points in its own cluster than to the points in any other cluster. Our notion can be motivated from several perspectives, including game theory and algorithmic fairness. We study several questions related to our proposed notion. We first show that
-
ICML 20222022We propose simple active sampling and reweighting strategies for optimizing min-max fairness that can be applied to any classification or regression model learned via loss minimization. The key intuition behind our approach is to use at each timestep a data point from the group that is worst off under the current model for updating the model. The ease of implementation and the generality of our robust formulation
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all