Customer-obsessed science
Research areas
-
November 28, 20254 min readLarge language models are increasing the accuracy, reliability, and consistency of the product catalogue at scale.
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
Featured news
-
AMTA 20222022Multilingual search is indispensable for a seamless e-commerce experience. E-commerce search engines typically support multilingual search by cascading a machine translation step before searching the index in its primary language. In practice, search query translation usually involves a translation memory matching step before machine translation. A translation memory (TM) can (i) effectively enforce terminologies
-
IEEE ICIP 20222022Videos often have to be transmitted and stored at low bitrates due to poor network connectivity during adaptive bitrate streaming. Designing optimal bitrate ladders that would select the perceptually-optimized resolution, frame-rate, and compression level for low-bitrate videos for adaptive streaming across the internet is therefore a task of great interest. Towards that end, we conducted the first large-scale
-
KDD 20222022Recent studies have demonstrated the ability of auto-regressive and seq-to-seq generative models to reach state-of-the-art performance on various Natural Language Understanding (NLU) and Natural Language Processing (NLP) tasks. They operate by framing all the tasks in a single formulation: text auto-completion or text-to-text encoding-decoding. These models can be trained on the products corpus in order
-
ECCV 20222022In recent years, the dominant paradigm for text spotting is to combine the tasks of text detection and recognition into a single end-to-end framework. Under this paradigm, both tasks are accomplished by operating over a shared global feature map extracted from the input image. Among the main challenges that end-to-end approaches face is the performance degradation when recognizing text across scale variations
-
ECCV 20222022We present MaCLR, a novel method to explicitly perform cross-modal self-supervised video representations learning from visual and motion modalities. Compared to previous video representation learning methods that mostly focus on learning motion cues implicitly from RGB inputs, MaCLR enriches standard contrastive learning objectives for RGB video clips with a cross-modal learning objective between a Motion
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all