Muthu Kumar Chandrasekaran, applied science manager at Amazon, stands near a large display screen with a slide showing the title of a presentation
Muthu Kumar Chandrasekaran is an applied science manager at Amazon who leads a team of scientists working on identifying risks via machine learning models.
Courtesy of Muthu Kumar Chandrasekaran

Using natural language processing to understand and identify risks

As an applied science manager at Amazon, Muthu Chandrasekaran works on new tools to automate and build a risk technology.

One of the things that drives Muthu Kumar Chandrasekaran’s interest in science is its potential to benefit society.

While pursuing his PhD at the National University of Singapore, he worked on applying natural language processing to online discussion forums with the aim of helping the instructors in massive open online courses (MOOC). MOOCs have small teams of instructors for hundreds of thousands of students who use the discussion boards to share their questions and comments. Chandrasekaran developed models to alert teachers to important conversations requiring their attention.

“The fact that you can make a system learn was fascinating to me ... I wanted to work on applying this in ways that would benefit society at large.”
Muthu Chandrasekaran

Today, he is an applied science manager at Amazon, where he leads a team of scientists working on identifying risks via machine learning models that analyze new technical products being developed by Amazon teams. The goal: identify problems that might negatively impact the customer experience — before products are launched.

His passion for science harkens back to an early age. Although he didn’t have a computer at home while growing up in Chennai, India, programming was a part of the school curriculum. Around ninth grade, he started learning the C programming language.

“It took a year for me to understand why we were learning programming. But by the time I got to eleventh grade, I had an idea of why we have to write programs and what they do,” he says. That eventually led to him to pursue an undergraduate degree in computer science and engineering.

In his third year of college, he took an introductory artificial intelligence course. “The fact that you can make a system learn was fascinating to me. I definitely became interested in machine learning and I thought that if I was ever going to graduate school, this was what I was going to do,” Chandrasekaran says. “I wanted to work on applying this in ways that would benefit society at large.”

Processing scientific documents

Related content
Giving a neural generation model “control knobs” enables modulation of the content of generated language.

Chandrasekaran worked for a couple of years in India’s IT sector before starting a master’s degree at the National University of Singapore. That’s where he first learned about natural language processing (NLP). His thesis focused on social network analysis and information extraction from scientific documents. One of his research questions was how to automatically process scientific papers to extract useful information by, for example, analyzing collaboration activities among scientists.

“The automatic processing of scientific documents is not a luxury, but a necessity,” says Chandrasekaran. When it comes to medicine and biomedical research, for example, there is a very large number of papers published daily, making it very hard for doctors and other health professionals to follow the medical literature.

While pursuing his masters and PhD, his work on scientific documents led him to an internship at the Allen Institute for Artificial Intelligence in Seattle, where he worked on a search engine called Semantic Scholar. That internship opened up research and industry opportunities in the US.

Exploring different paths at Amazon

That’s when Amazon recruiters on the Alexa team reached out to him. In 2019, he joined the Alexa devices team to work on large-scale training on users’ data for Alexa’s NLU models, and then transitioned to the Amazon Web Services (AWS) Amazon Comprehend team, which provides a suite of NLP services to uncover valuable insights from text in documents.

Related content
McKeown is a featured speaker at the first virtual Amazon Web Services Machine Learning Summit on June 2.

There he had the opportunity to advise applied science interns along with Kathleen McKeown, an Amazon Scholar and a professor of computer science at Columbia University who was advising the Comprehend team. “My weekly meeting to advise the interns towards publications was the experience I most enjoyed. In fact, we successfully published a paper at EACL 2021.”

In 2021, he was contacted by Erwin Cornejo, who leads a startup team of scientists, software engineers, UI/IX designers, product managers, risk managers, and economists focused on building enterprise applications and machine-learning services using NLP. Cornejo’s team was seeking NLP experts with a background in information retrieval and summarization. “He had some very interesting ideas with potential for impact,” Chandrasekaran says. That aspect, plus the chance to lead a team, sparked his interest.

Understanding and identifying risks

Chandrasekaran accepted the challenge and today leads risk science, which is part of the Customer Experience and Business Trends (CXBT) organization. CXBT comprises diverse Amazon businesses dedicated to deeply understanding and improving customer experiences globally.

“This whole field of risk analytics is basically about predicting or forecasting what can go wrong,” he explains. His team focuses on risks that impact customer trust and experience. “At Amazon, customer trust is paramount. One of Amazon’s leadership principles is customer obsession because once customer trust is broken, it is difficult to earn it back.”

Related content
ADePT model transforms the texts used to train natural-language-understanding models while preserving semantic coherence.

His team’s primary project is a machine learning model that forecasts potential problems that a new product might develop based on a database of previous product errors. The model can be applied during the ideation phase or just before a product is launched.

“As long as you can give it a description, our models can analyze this content as an input, and search the correction of errors database. Then the models will distill previous instances of errors and outages that have occurred in Amazon products similar to the one you're building.”

His team continues to refine the models and plans to expand data sources to include public information related to outages, hacking, security lapses, and other problems and errors that affected other companies.

“Applied scientists on my team have a PhD or master’s degree in an artificial intelligence area such as natural language processing, computational linguistics, or information retrieval,” Chandrasekaran explains. “Interns are PhD or master’s students with a similar background. They all are passionate about artificial intelligence and the impact they are making in the risk space.”

Advancing the research field

One of the things that Chandrasekaran appreciates most about working at Amazon is the widespread use of NLP across various Amazon organizations. Those broad applications mean the appeal of working in NLP is expanding as well.

Related content
Decision trees class gives students access to cutting-edge instruction on key machine-learning topic.

Chandrasekaran notes that many data scientists are moving into NLP, learning the necessary skills through the company's Machine Learning University courses. “I appreciate Amazon for this initiative to increase the talent pool in natural language processing. They're not only benefiting Amazon, but actually benefiting the whole industry.”

That focus on expanding the benefits of research resonates with Chandrasekaran. As an area chair for the Association for Computational Linguistics (ACL) Rolling Review initiative, he manages more than 20 reviewers and reviews several scientific papers on NLP every month, recommending whether ACL should accept them for publication or not. “I’m glad to have been invited and happy to be part of this community.”

For young scientists or students who want to pursue a career similar to his, Chandrasekaran advises against focusing on a research area that already is big.

He believes researchers have only begun to scratch the surface of what’s possible with NLP. “You want to be focusing on things on which NLP has not yet had an impact, and particularly focus on areas that can benefit society,” he says. “Opportunities come from problems that are not yet solved. That's where your passion should lie.”

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, NY, New York
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day!The Advertising Modeling, Optimization and Data Science team enhances Advertising teams’ decision-making by providing an exhaustive suite of analytics and automation products, and by extracting meaning from Amazon Advertising’s global operations. We own and operate a large-scale AWS-based data infrastructure that acts as a pivot to Worldwide operations, enabling critical downstream applications in ad management, design, billing, as well as customer feedback, software infrastructure, and more. The team consists of Business Intelligence Engineers, Data Scientists, and Data Engineers, who work together to improve our Advertisers' and Shoppers' experience with Amazon Advertising by accompanying and supporting the analytical needs of our partner teams.As a Senior Data Scientist on this team you will:Lead Data Science solutions from beginning to end.Deliver with independence on challenging large-scale problems with complexity and ambiguity.Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data.Build Machine Learning and statistical models to solve specific business problems.Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance.Analyze historical data to identify trends and support optimal decision making.Apply statistical and machine learning knowledge to specific business problems and data.Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed.Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes.Build decision-making models and propose effective solutions for the business problems you define.Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication.Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, Palo Alto
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products are strategically important to our businesses driving long term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day!The Machine Learning Optimization (MLO) team develops algorithms and systems that improve the performance and delivery of Amazon’s Display Advertising campaigns and automates campaign management using machine learning techniques. The team develops and deploys machine learning solutions that drive ad selection, bidding, user response prediction, and automated campaign management. Customers are advertisers and publishers who do business with Amazon.We own the system for batch training of user response prediction models, while the ad serving engineering team owns the real-time model scoring component. This teams owns the system for automated management of advertising campaigns, which can dynamically adjust parameters such as budget, bid prices, and targeting to optimize for campaign performance.As an Applied Scientist on this team, you will: Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity.Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience.Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models.Run A/B experiments, gather data, and perform statistical analysis.Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving.Research new and innovative machine learning approaches.Recruit Applied Scientists to the team and provide mentorship.Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video https://youtu.be/zD_6Lzw8raE Advanced degree in Computer Science, Mathematics, Statistics, Economics, or related quantitative field.Published research work in academic conferences or industry circles.Experience in building large-scale machine-learning models and infra for online recommendation, ads ranking, personalization, or search, etc.Effective verbal and written communication skills with non-technical and technical audiences.Experience working with large real-world data sets and building scalable models from big data.Thinks strategically, but stays on top of tactical execution.Exhibits excellent business judgment; balances business, product, and technology very well.Experience in computational advertising.Key job responsibilitiesYou will work on the next generation of our real-time pricing systems. These systems are optimizing the price of every individual opportunity on behalf of Amazon Advertising advertisers. A day in the lifeConduct offline analysis of data to guide design decisions with the product teamConduct A/B test setup and analyze results to guide rollout, go to market or development priority decisionsSuggest and implement models to sophisticate the advertising products we offer to our customersAbout the teamThe Ranking team is responsible for real-time pricing decisions on the Amazon RTB (Real-Time Bidding) system
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon, and subsequently make Amazon their default starting point for future shopping journeys. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand contents that customers trust, and furnish customers with these contents in a way that is precisely tailored to their individual needs at any stage of their shopping journey. Key job responsibilitiesWe are looking for an Applied Scientist to join our rapidly growing Seattle team. As an Applied Scientist, you are able to use a range of science methodologies in NLP/CV to solve challenging business problems when the solution is unclear. For example, you may lead the development of reinforcement learning models such as MAB to rank content to be shown to customers based on their queries. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as SageMaker, S3, and EC2 with a variety of skillsets in shallow and deep learning ML models, particularly in NLP and CV. You will bring knowledge in many of these domains along with your own specialties and skilset.Major responsibilities:Use statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative models for NLP.Work closely with teams of scientists and software engineers to drive real-time model implementations and new feature creations.Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team puts a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.
US, WA, Seattle
Job summaryAre you excited about joining a team of scientists building lasting solutions for Amazon customers from the ground up? Our team is using machine learning, and statistical methods to take Amazon’s unique customer obsession culture to another level by designing solutions that change customers behavior when it comes to product search, discovery, and purchase. In order to achieve this, we need scientists who will help us build advanced algorithms that deliver first-rate user experience during customers’ shopping journeys on Amazon. These algorithms will utilize advances in Natural Language Understanding, and Computer Vision to source and understand content that customers trust, and furnish customers with the content in a way that meets their needs at any stage of their shopping journey. Key job responsibilitiesUse statistical and machine learning techniques to create scalable and lasting systems.Analyze and understand large amounts of Amazon’s historical business data for Recommender/Matching algorithmsDesign, develop and evaluate highly innovative - Work closely with teams of scientists and software engineers to drive real-time model implementationsEstablish scalable, efficient, automated processes for large scale data analyses, model development, model validation and implementation.Research and implement novel machine learning and statistical approaches, including NLP and Computer VisionA day in the lifeIn this role, you’ll be utilizing your NLP or CV skills, and creative and critical problem-solving skills to drive new projects from ideation to implementation. Your science expertise will be leveraged to research and deliver often novel solutions to existing problems, explore emerging problems spaces, and create or organize knowledge around them. About the teamOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future.We put a high value on your work and personal life happiness. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of you. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to establish your own harmony between your work and personal life.