Search results

18,565 results found
  • Raefer Gabriel, Yang Liu, Anna Gottardi, Mihail Eric, Anju Khatri, Anjali Chadha, Qinlang Chen, Behnam Hedayatnia, Pankaj Rajan, Ali Binici, Shui Hu, Karthik Gopalakrishnan, Seokhwan Kim, Lauren Stubel, Kate Bland, Arindam Mandal, Dilek Hakkani-Tür
    Alexa Prize SocialBot Grand Challenge 3 Proceedings
    2019
    Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. The Alexa Prize Socialbot Grand Challenge was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the third iteration of the competition, university teams have moved the needle on the state of the art
  • Leyuan Wang, Zhi Chen, Yizhi Liu, Yao Wang, Lianmin Zheng, Mu Li, Yida Wang
    ICPP 2019
    2019
    Modern deep learning applications urge to push the model inference taking place at the edge devices for multiple reasons such as achieving shorter latency, relieving the burden of the network connecting to the cloud, and protecting user privacy. The Convolutional Neural Network (CNN) is one of the most widely used model family in the applications. Given the high computational complexity of the CNN models
  • Denis Peskov, Nancy Clarke, Jason Krone, Brigi Fodor, Yi Zhang, Adel Youssef, Mona Diab
    2019
    The need for high-quality, large-scale, goal-oriented dialogue datasets continues to grow as virtual assistants become increasingly widespread. However, existing publicly available datasets useful for this area are limited either in their size, linguistic diversity, domain coverage, or annotation granularity. We introduce the MultiDoGO dataset to overcome these limitations. With a total of over 65,000 dialogues
  • Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhranshu Maji, Charless Fowlkes, Stefano Soatto, Pietro Perona
    2019
    We introduce a method to generate vectorial representations of visual classification tasks that can be used to reason about the nature of those tasks and their relations. Given a dataset with ground-truth labels and a loss function, we process images through a “probe network” and compute an embedding based on estimates of the Fisher information matrix associated with the probe network parameters. This provides
  • Reinforcement Learning (RL) has achieved state-of-the-art results in domains such as robotics and games. We build on this previous work by applying RL algorithms to a selection of canonical online stochastic optimization problems with a range of practical applications: Bin Packing, Newsvendor, and Vehicle Routing. While there is a nascent literature that applies RL to these problems, there are no commonly
  • Pushpendre Rastogi, Arpit Gupta, Tongfei Chen, Lambert Mathias
    2019
    Dialogue assistants are used by millions of people today to fulfill a variety of tasks. Such assistants also serve as a digital marketplace where any developer can build a domain-specific, task-oriented, dialogue agent offering a service such as booking cabs, ordering food, listening to music, shopping etc. Also, these agents may interact with each other, when completing a task on behalf of the user. Accomplishing
  • Feng Nan, Ran Ding, Ramesh Nallapati, Bing Xiang
    2019
    We propose a novel neural topic model in the Wasserstein autoencoders (WAE) framework. Unlike existing variational autoencoder based models, we directly enforce Dirichlet prior on the latent document-topic vectors. We exploit the structure of the latent space and apply a suitable kernel in minimizing the Maximum Mean Discrepancy (MMD) to perform distribution matching. We discover that MMD performs much
  • Nathalie Rauschmayr, Vikas Kumar, Rahul Huilgol, Andrea Olgiati, Satadal Bhattacharjee, Nihal Harish, Vandana Kannan, Amol Lele, Anirudh Acharya, Jared Nielsen, Lakshmi Ramakrishnan, Ishaaq Chandy, Ishan Bhatt, Zhihan Li, Kohen Chia, Neelesh Dodda, Jiacheng Gu, Miyoung Choi, Balajee Nagarajan, Jeffrey Geevarghes, Denis Davydenko, Sifei Li, Lu Huang, Edward Kim, Tyler Hill, Krishnaram Kenthapadi
    2019
    Amazon SageMaker Debugger automates the debugging process of machine learning training jobs. From training jobs, Debugger allows you to run your own training script (Zero Script Change experience) using Debugger built-in features—Hook and Rule—to capture tensors, have flexibility to build customized Hooks and Rules for configuring tensors as you want, and make the tensors available for analysis by saving
  • MLIO is a high performance data access library for machine learning tasks with support for multiple data formats. It makes it easy for scientists to train models on their data without worrying about the format or where it's stored. Algorithm developers can also use MLIO to build production-quality algorithms that support a rich variety of data formats and provide helpful parsing and validation messages
  • Esma Balkir, Masha Naslidnyk, Dave Palfrey, Arpit Mittal, Sophie Durrant
    2019
    In this paper we study techniques to improve the performance of bilinear embedding methods for knowledge graph completion on large datasets, where at each epoch the model sees a very small percentage of the training data, and the number of generated negative examples for each positive example is limited to a small portion of the entire set of entities. We first present a heuristic method to infer the types
  • 2019
    We introduce Gluon Time Series (GluonTS)1, a library for deep-learning-based time series modeling. GluonTS simplifies the development of and experimentation with time series models for common tasks such as forecasting or anomaly detection. It provides all necessary components and tools that scientists need for quickly building new models, for efficiently running and analyzing experiments and for evaluating
  • David Roberts, Peter Schmiedeskamp, Steve Gillard, Erin Chu, Chris Stoner
    2019
    The Amazon Sustainability Data Initiative (ASDI) seeks to accelerate sustainability research and innovation by minimizing the cost and time required to acquire and analyze large sustainability datasets. ASDI supports innovators and researchers with the data, tools, and technical expertise they need to move sustainability to the next level. This repo contains docs, examples, and supporting material for ASDI
  • Andreea Florescu, Jiang Liu, Luminita Voicu, Alexandru Cihodaru, Sebastien Boeuf, Adrian Costin Catangiu, George Pisaltu, Damien Stanton, Jonathan Woollett-Light, William Douglas, Alexandra Iordache, Ioana Chirca, Eisuke Matsushita, Tim Visée, Laura Loghin, Keyang Xie, Karthik Nedunchezhiyan, Bob Potter, Changwei Ge
    2019
    This is a minimal implementation of the HTTP/1.0 and HTTP/1.1 protocols. This HTTP implementation is stateless thus it does not support chunking or compression. The micro-http implementation is used in production by Firecracker. As micro-http uses std::os::unix this crates only supports Unix-like targets.
  • Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anushree Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür
    2019
    Building socialbots that can have deep, engaging open-domain conversations with humans is one of the grand challenges of artificial intelligence (AI). To this end, bots need to be able to leverage world knowledge spanning several domains effectively when conversing with humans who have their own world knowledge. Existing knowledge-grounded conversation datasets are primarily stylized with explicit roles
  • 2019
    Pre-trained models have demonstrated their effectiveness in many downstream natural language processing (NLP) tasks. The availability of multilingual pre-trained models enables zero-shot transfer of NLP tasks from high resource languages to low resource ones. However, recent research in improving pre-trained models focuses heavily on English. While it is possible to train the latest neural architectures
  • James Thorne, Andreas Vlachos, Oana Cocarascu, Christos Christodoulopoulos, Arpit Mittal
    2019
    We present the results of the second Fact Extraction and VERification (FEVER2.0) Shared Task. The task challenged participants to both build systems to verify factoid claims using evidence retrieved from Wikipedia and to generate adversarial attacks against other participant’s systems. The shared task had three phases: building, breaking and fixing. There were 8 systems in the builder’s round, three of
  • May 21, 2019
    A person’s tone of voice can tell you a lot about how they’re feeling. Not surprisingly, emotion recognition is an increasingly popular conversational-AI research topic.
  • May 16, 2019
    Text normalization is an important process in conversational AI. If an Alexa customer says, “book me a table at 5:00 p.m.”, the automatic speech recognizer will transcribe the time as “five p m”. Before a skill can handle this request, “five p m” will need to be converted to “5:00PM”. Once Alexa has processed the request, it needs to synthesize the response — say, “Is 6:30 p.m. okay?” Here, 6:30PM will be converted to “six thirty p m” for the text-to-speech synthesizer. We call the process of converting “5:00PM” to “five p m” text normalization and its counterpart — converting “five p m” to “5:00PM” — inverse text normalization.
  • May 13, 2019
    Recently, we published a paper showing that training a neural network to do language processing in English, then retraining it in German, drastically reduces the amount of German-language training data required to achieve a given level of performance.
  • Young-Bum Kim
    May 3, 2019
    Using cosine similarity rather than dot product to compare vectors helps prevent "catastrophic forgetting".
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist; to support the development and implementation of Generative AI (GenAI) algorithms and models for supervised fine-tuning, and advance the state of the art with Large Language Models (LLMs), As an Applied Scientist, you will play a critical role in supporting the development of GenAI technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA Amazon is seeking an innovative and high-judgement Senior Applied Scientist to join the Privacy Engineering team in the Amazon Privacy Services org. We own products and programs that deliver technical innovation for ensuring compliance with high-impact, urgent regulation across Amazon services worldwide. The Senior Applied Scientist will contribute to the strategic direction for Amazon’s privacy practices while building/owning the compliance approach for individual regulations such as General Data Protection Regulation (GDPR), DMA, Quebec 25 etc. This will require helping to frame, and participating in, high judgment debates and decision making across senior business, technology, legal, and public policy leaders. A great candidate will have a unique combination of experience with innovative data governance technology, high judgement in system architecture decisions and ability to set detailed technical design from ambiguous compliance requirements. You will drive foundational, cross-service decisions, set technical requirements, oversee technical design, and have end to end accountability for delivering technical changes across dozens of different systems. You will have high engagement with WW senior leadership via quarterly reviews, annual organizational planning, and s-team goal updates. Key job responsibilities * Develop information retrieval benchmarks related to code analysis and invent algorithms to optimize identification of privacy requirements and controls. * Develop semantic and syntactic code analysis tools to assess privacy implementations within application code, and automatic code replacement tools to enhance privacy implementations. * Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence for privacy compliance. * Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions. A day in the life Amazon Privacy Services own products and programs that deliver technical innovation for ensuring Privacy Amazon services worldwide. We are hiring an innovative and high-judgement Senior Applied Scientist to develop AI solutions for builders across Amazon’s consumer and digital businesses including but not limited to Amazon.com, Amazon Ads, Amazon Go, Prime Video, Devices and more. Our ideal candidate is creative, has excellent problem-solving skills, a solid understanding of computer science fundamentals, deep learning and a customer-focused mindset. The Senior Scientist will serve as the resident expert on the development of AI agents for privacy. They build on their experiences to develop LLMs to develop AI implementations across privacy workflows. They will have responsibilities to mentor junior scientists and engineers develop AI skills. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system