Search results

18,665 results found
  • Zhiqiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, Rui Fan
    MLSys 2021 Workshop on Neural Networks and Systems
    2021
    Graph neural networks (GNNs) are a new class of powerful machine learning models, but easy programming and efficient computing is often at odds. Current GNN frameworks are based on a message passing paradigm, and allow the concise expression of GNN models using built-in primitives and user defined functions (UDFs). While built-in primitives offer high performance, they are limited in expressiveness; UDFs
  • Dheeraj Baby, Hilaf Hasson, Yuyang (Bernie) Wang
    ICML 2021 Time Series Workshop
    2021
    We consider the framework of non-stationary Online Convex Optimization where a learner seeks to control its dynamic regret against an arbitrary sequence of comparators. When the loss functions are strongly convex or exp-concave, we demonstrate that Strongly Adaptive (SA) algorithms can be viewed as a principled way of controlling dynamic regret in terms of path variation VT of the comparator sequence. Specifically
  • Alex Dalzell, Nicholas Hunter-Jones, Fernando Brandão
    arXiv
    2021
    We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime. We show that, for local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution p_(noisy) of a generic noisy circuit instance and the output distribution pideal of the corresponding noiseless instance shrink exponentially
  • Stefanie Czischek, Giacomo Torlai, Sayonee Ray, Rajibul Islam, Roger G. Melko
    Physical Review A
    2021
    The rise of programmable quantum devices has motivated the exploration of circuit models which could realize novel physics. A promising candidate is a class of hybrid circuits, where entangling unitary dynamics compete with disentangling measurements. Novel phase transitions between different entanglement regimes have been identified in their dynamical states, with universal properties hinting at unexplored
  • Chi-Fang Chen, Fernando Brandão
    arXiv
    2021
    The Eigenstate Thermalization Hypothesis (ETH) has played a major role in explaining thermodynamic phenomena in quantum systems. However, so far, no connection has been known between ETH and the timescale of thermalization. In this paper, we rigorously show that ETH indeed implies fast thermalization to the global Gibbs state. We show fast convergence for two models of thermalization. In the first, the
  • Shui Hu, Yang Liu, Anna Gottardi, Behnam Hedayatnia, Anju Khatri, Anjali Chadha, Qinlang Chen, Pankaj Rajan, Ali Binici, Varun Somani, Yao Lu, Prerna Dwivedi, Lucy Hu, Hangjie Shi, Sattvik Sahai, Mihail Eric, Karthik Gopalakrishnan, Seokhwan Kim, Spandana Gella, Alexandros Papangelis, Patrick Lange, Di Jin, Nicole Burnstein (Chartier), Mahdi Namazifar, Aishwarya Padmakumar, Sarik Ghazarian, Shereen Oraby, Anjali Narayan-Chen, Yuheng Du, Lauren Stubell, Savanna Stiff, Kate Bland, Arindam Mandal, Reza Ghanadan, Dilek Hakkani-Tür
    Alexa Prize SocialBot Grand Challenge 4 Proceedings
    2021
    Building open domain conversational systems that allow users to have engaging conversations on topics of their choice is a challenging task. The Alexa Prize Socialbot Grand Challenge was launched in 2016 to tackle the problem of achieving natural, sustained, coherent and engaging open-domain dialogs. In the fourth iteration of the competition, university teams have incorporated semantic parsing, common
  • Tim Januschowski, 80 co-authors
    International Journal of Forecasting
    2021
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review
  • Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, Stephan Günnemann
    ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning , NeurIPS 2021
    2021
    Automatically detecting anomalies in event data can provide substantial value in domains such as healthcare, DevOps, and information security. In this paper, we frame the problem of detecting anomalous continuous-time event sequences as out-of-distribution (OoD) detection for temporal point processes (TPPs). We show how this problem can be approached using tools from the goodness-of-fit (GoF) testing literature
  • ACM Computing Surveys
    2021
    Deep learning based forecasting methods have become the methods of choice in many applications of time series prediction or forecasting often outperforming other approaches. Consequently, over the last years, these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently ranked among the best entries in forecasting competitions(e.g.,M4andM5). This practical success
  • Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alex Smola, Yuyang (Bernie) Wang, Tim Januschowski
    NeurIPS 2021
    2021
    Many complex time series can be effectively subdivided into distinct regimes that exhibit persistent dynamics. Discovering the switching behavior and the statistical patterns in these regimes is important for understanding the underlying dynamical system. We propose the Recurrent Explicit Duration Switching Dynamical System (RED-SDS), a flexible model that is capable of identifying both state- and time-dependent
  • Richard Kurle, Tim Januschowski, Jan Gasthaus, Yuyang (Bernie) Wang
    NeurIPS 2021 Workshop on Bayesian Deep Learning
    2021
    Probabilistic inference of Neural Network parameters is challenging due to the highly multi-modal likelihood functions. Most importantly, the permutation invariance of the neurons of the hidden layers renders the likelihood function unidentifiable with a factorial number of equivalent (symmetric) modes, independent of the data. We show that variational Bayesian methods that approximate the (multi-modal)
  • Tim Januschowski, Yuyang (Bernie) Wang, Kari Torkkola, Timo Erkkilä, Hilaf Hasson, Jan Gasthaus
    International Journal of Forecasting
    2021
    The prevalence of approaches based on gradient boosted trees among the top contestants in the M5 competition is potentially the most eye-catching result. Tree-based methods out-shone other solutions, in particular deep learning-based solutions. The winners in both tracks of the M5 competition heavily relied on them. This prevalence is even more remarkable given the dominance of other methods in the literature
  • Joel Mackenzie, Matthias Petri, Alistair Moffat
    Information Retrieval Journal
    2021
    In top-k ranked retrieval the goal is to efficiently compute an ordered list of the highest scoring k documents according to some stipulated similarity function such as the well-known BM25 approach. In most implementation techniques a min-heap of size k is used to track the top scoring candidates. In this work we consider the question of how best to retrieve the second page of search results, given that
  • arXiv
    2021
    As cloud computing resources become more adopted, the infrastructures in which they are used naturally grow in the amount of resources and overall complexity, becoming harder to manage. Infrastructure-as-Code (IaC) is presented as a solution to this problem, allowing developers to manage and provision these cloud resources programmatically. The infrastructure is then maintained through a code base, allowing
  • Denis Jered McInerney, Chris (Luyang) Kong, Kristjan Arumae, Byron Wallace, Parminder Bhatia
    NeurIPS 2021 Workshop on Machine Learning in Public Health
    2021
    Multi-task learning is useful in NLP because it is often practically desirable to have a single model that works across a range of tasks. In the medical domain, sequential training on tasks may sometimes be the only way to train models, either because access to the original (potentially sensitive) data is no longer available, or simply owing to the computational costs inherent to joint retraining. A major
  • Elisabetta Valiante, Maritza Hernandez, Amin Barzega, Helmut Katzgraber
    Computer Physics Communications
    2021
    Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques—commonly used in fundamental physics studies—are ideally suited to solve optimization
  • James R. Seddon, Bartosz Regula, Hakop Pashayan, Yingkai Ouyang, Earl Campbell
    PRX Quantum
    2021
    Consumption of magic states promotes the stabilizer model of computation to universal quantum computation. Here, we propose three different classical algorithms for simulating such universal quantum circuits, and characterize them by establishing precise connections with a family of magic monotones. Our first simulator introduces a new class of quasiprobability distributions and connects its runtime to
  • Patrick Hayden, Sepehr Nezami, Sandu Popescu, Grant Salton
    PRX Quantum
    2021
    The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill
  • Juan Carrasquilla, Giacomo Torlai
    PRX Quantum
    2021
    Over the past few years, machine learning has emerged as a powerful computational tool to tackle complex problems in a broad range of scientific disciplines. In particular, artificial neural networks have been successfully used to mitigate the exponential complexity often encountered in quantum many-body physics, the study of properties of quantum systems built from a large number of interacting particles
  • Robin Harper, Wenjun Yu, Steven T. Flammia
    PRX Quantum
    2021
    As quantum computers approach the fault tolerance threshold, diagnosing and characterizing the noise on large scale quantum devices is increasingly important. One of the most important classes of noise channels is the class of Pauli channels, for reasons of both theoretical tractability and experimental relevance. Here we present a practical algorithm for estimating the s nonzero Pauli error rates in an
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Research Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Analyze complex healthcare data to identify patterns, trends, and insights • Develop and validate statistical methodologies • Collaborate with Applied Scientists to support model development efforts • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for data analysis, data curation, and model evaluation • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in statistics, knowledge of the complications of longitudinal healthcare data, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to prepare data, build ML models, validate model predictions and ensure statistical rigor in our approach. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
IL, Tel Aviv
We are looking for a Data Scientist to join our Prime Video team in Israel, focusing on personalizing customer experiences through Search and Recommendations. Our team leverages Machine Learning (ML) to deliver tailored content discovery, helping millions of customers find the entertainment they love. You will work on large-scale experimentation, measurement frameworks, and data-driven decision-making that directly shapes how customers interact with Prime Video. Key job responsibilities - Design metrics frameworks and evaluation systems to measure the quality, performance, and reliability of algorithmic solutions - Lead the design, execution, and analysis of A/B tests to validate product hypotheses and quantify customer impact - Communicate analytical findings and recommendations clearly to both technical teams and business stakeholders, driving data-informed decisions - Partner with Applied Scientists, Software Engineers, and Product Managers to define requirements, evaluate models, and drive data-informed product decisions - Act as the subject matter expert for data structures, metrics definitions, and analytical best practices - Identify opportunities for improving customer experience through deep-dive analyses of user behavior and algorithm performance
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team is building next-generation personalization systems powered by Large Language Models. We are tackling novel research challenges to help customers discover products they'll love - at Amazon scale and latency requirements. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Science Manager, you will lead a team of scientists working at the frontier of LLM-based personalization. You will set the technical vision, drive the research agenda, and ensure your team delivers production-ready solutions. You will hire, mentor, and develop world-class scientists while fostering a culture of innovation and scientific rigor. You will partner closely with engineering and product teams to translate ambitious research into customer-facing impact, and represent your team's work to senior leadership. Please visit https://www.amazon.science for more information.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. Key job responsibilities - Work backwards from customer problems to research and develop novel machine learning solutions for music and podcast recommendations. Through A/B testing and online experiments done hand-in-hand with engineering teams, you'll implement and validate your ideas and solutions. - Advocate solutions and communicate results, insights and recommendations to stakeholders and partners. - Produce innovative research on recommender systems that shapes the field and meets the high standards of peer-reviewed publications. You'll cement your team's reputation as thought leaders pioneering new recommenders. Stay current with advancements in the field, adapting latest in literature to build efficient and scalable models A day in the life Lead innovation in AI/ML to shape Amazon Music experiences for millions. Develop state of the art models leveraging and advancing the latest developments in machine learning and genAI. Collaborate with talented engineers and scientists to guide research and build scalable models across our audio portfolio - music, podcasts, live streaming, and more. Drive experiments and rapid prototyping, leveraging Amazon's data at scale. Innovate daily alongside world-class teams to delight customers worldwide through personalization. About the team The team is responsible for models that underly Amazon Music’s recommendations content types (music, podcasts, audiobooks), sequencing models for algorithmic stations across mobile, web and Alexa, ranking models for the carousels and Page strategy on Amazon Music surfaces, and Query Understanding for conversational flow and recommendations. You will collaborate with a team of product managers, applied scientists and software engineers delivering meaningful recommendations, personalized for each of the millions of customers using Amazon Music globally. As a scientist on the team, you will be involved in every aspect of the development lifecycle, from idea generation and scientific research to development and deployment of advanced models. You will work closely with engineering to realize your scientific vision.
US, WA, Seattle
We are seeking a Senior Applied Scientist to join our team in developing pioneering AI research, Generative AI, Agentic AI, Large Language Models (LLMs), Diffusion and Flow Models, and other advanced Machine Learning and Deep Learning solutions for Amazon Selection and Catalog Systems, within the AI Lab Team. This role offers a unique opportunity to work on AI research and AI products that will shape the future of online shopping experiences. Our team operates at the forefront of AI research and development, working on challenges that directly impact millions of customers worldwide. We push the boundaries of AI at both the foundational and application layers. As a Senior Applied Scientist, you will have the chance to experiment with LLMs and deep learning techniques, apply your research to solve real-world problems at an unprecedented scale, and collaborate with experienced scientists to contribute to Amazon's scientific innovation. Join us in redefining the future of shopping. Your work will directly influence how customers interact with the world's largest online store. Key job responsibilities - Design and implement novel AI solutions for Amazon catalog of products - Develop and train state-of-the-art LLMs, Diffusion Models, and other Generative AI models - Build and deploy autonomous AI Agents in Amazon production ecosystem - Scale AI models to handle billions of diverse products across multiple languages and geographies - Conduct research in areas such as Autonomous AI Agents, Generative AI, Language Modeling, Multi-modality Computer Vision, Diffusion Models, Reinforcement Learning - Collaborate with cross-functional teams to integrate AI models into Amazon's production ecosystem - Contribute to the scientific community through publications and conference presentations