Michele Donini, left, a senior applied scientist with Amazon Web Services, and Luca Oneto, associate professor of computer engineering at University of Genoa
Michele Donini, left, a senior applied scientist with Amazon Web Services, and Luca Oneto, associate professor of computer engineering at University of Genoa, review different approaches that can make data-driven predictions fairer for underrepresented groups.
Credit: Glynis Condon

Working toward fairer machine learning

Exploring and analyzing possible techniques to make ML algorithms capable of learning fairer models by utilizing empirical risk minimization theory.

Editor’s note: Michele Donini is a senior applied scientist with Amazon Web Services (AWS). He and his co-author, Luca Oneto, associate professor of computer engineering at University of Genoa, have written about how different approaches can make data-driven predictions fairer for underrepresented groups. Oneto also won a 2019 Machine Learning Research award for his work on algorithmic fairness. In this article, Donini and Oneto explore the research they and other collaborators have published related to designing machine learning (ML) models from a human-centered perspective, and building responsible AI.

What is fairness?

Fairness can be defined in many different ways, and many different formal notions exist, such as demographic parity, equal opportunity, and equal odds.

Graphic shows a model of an unfair outcome on the left and a fair outcome on the right
Algorithmic fairness is a topic of great importance, with impact on many applications. The issue requires much further research; even the definition of what “being fair” means for an ML model is still an open research question.

Nevertheless, the basic and common idea behind notions of fairness is that the learned ML model should behave equivalently, or at least similarly, no matter whether it is applied to one subgroup of the population (e.g., males) or to another one (e.g., females).

For example, demographic parity, which arguably is the most common notion of fairness, implies that the probability of a certain output of an ML model (e.g., deciding to make a loan) should not depend on the value of specific demographic attributes (e.g., gender, race, or age).

Moving toward fairer models

Broadly speaking, we can group current literature on algorithmic fairness into three main approaches:

  • The first approach consists of pre-processing the data to remove historical biases and then feeding this data to classical ML models.
  • The second approach consists of post-processing an already learned ML model. This approach is useful when very complex ML models need to be made fairer without touching their inner structure or when re-training them is unfeasible (due to computational cost, or time requirements).
  • The third approach, called in-processing, consists of enforcing fairness notions by imposing specific statistical constraints during the learning phase of the model. This is the most natural approach, but so far, it has required ad hoc solutions tailored to specific tasks and data sets.
Fair Models.png
Broadly speaking, current literature on algorithmic fairness falls into three main approaches: pre-processing data; post-processing an already learned ML model; and in-processing, which consists of enforcing fairness notions by imposing specific statistical constraints during the learning phase of the model.

We decided to explore and analyze possible techniques to make ML algorithms capable of learning fairer models.

We started from the base concepts of statistical learning theory — a mathematical framework for describing machine learning — and, in particular, from empirical risk minimization theory. The core concept of empirical risk minimization is that a model’s performance on test data may not accurately predict its performance on real-world data, as the real-world data may have a different probability distribution.

Empirical-risk-minimization theory provides a way to estimate the “true risk” of a model from its “empirical risk”, which can be computed from the available data. We extended this concept to the true and empirical fairness risk of ML models.

Below is a summary of three papers we’ve published related to these topics.

Empirical risk minimization under fairness constraints

This paper presents a new in-processing method, meaning that we incorporate a fairness constraint into the learning problem. We derive theoretical guarantees on both the accuracy and fairness of the resulting models, and we show how to apply our method to a large family of machine learning algorithms, including linear models and support vector machines for classification (a widely used supervised-learning method).

We observe that, in practice, we can meet our fairness constraint simply by requiring that a scalar product between two vectors remains small (an orthogonality constraint between the vector of the weights describing our model and the vector describing the discrimination between the different subgroups). We further observe that, for linear models, this requirement translates into a simple pre-processing method. Experiments indicate that our approach is empirically effective and performs favorably against state-of-the-art approaches.

Fair regression with Wasserstein barycenters

In this paper, we consider the case in which the ML model learns a regression function (as opposed to a classification task). We propose a post-processing method for transforming a real-valued regression function — the ML model — into one that satisfies the demographic-parity constraint (i.e., the probability of getting a positive outcome should be virtually the same for different subgroups). In particular, the new regression function is as good an approximation of the original as is possible while still satisfying the constraint, making it an optimal fair predictor.

Fair Representation.png
In “Fair regression with Wasserstein barycenters”, we consider the case in which the ML model learns a regression function and propose a post-processing method for transforming a real-valued regression function — the ML model — into one that satisfies the demographic-parity constraint.

We assume that the sensitive attribute — the demographic attribute that should not bias outcome — is available to the ML model at inference time and not only during training. We establish a connection between learning a fair model for regression and optimal transport theory, which describes how to measure distances among probability distributions. On that basis, we derive a closed-form expression for the optimal fair predictor.

Specifically, under the unfair regression function, different populations have different probability distributions; the function skews the probabilities for the population with the sensitive attribute. The difference between subgroups’ distributions can be calculated using the Wasserstein distance. We show that the mean of the distribution of the optimal fair predictor is the mean of the different subgroups’ distributions, as calculated using Wasserstein distance. This mean is known as the Wasserstein barycenter.

This result offers an intuitive interpretation of optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish fairness-risk guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is smaller than the relative gain in fairness.

"Exploiting MMD and Sinkhorn divergences for fair and transferable representation learning

Where the first paper described a general learning method, and the second a regression method, this paper concerns deep learning. We show how to improve demographic parity in the multitask-learning setting, in which a deep-learning model learns a single representation of the input data that is useful for multiple tasks. We derive theoretical guarantees on the learned model, establishing that the representation will still reduce bias even when transferred to novel tasks.

We propose a learning algorithm that imposes constraints based on two different ways of measuring distances between probability distributions, maximum mean discrepancy and Sinkhorn divergence. Keeping this distance small ensures that we represent similar inputs in a similar way when they differ only on the sensitive attribute. We present experiments on three real-world datasets, showing that the proposed method outperforms state-of-the-art approaches by a significant margin.

Algorithmic fairness is a topic of great importance, with impact on many applications. In our work, we have attempted to take a small step forward, but the issue requires much further research; even the definition of what “being fair” means for an ML model is still an open research question.

It’s also becoming clearer that we need to keep humans in the loop during the lifecycle of ML models, to evaluate whether the models are acting as we would like them to. In this sense, it is important to note that many other research subjects – such as the explainability, interpretability, and privacy of ML models – are deeply connected to algorithmic fairness. They can work in synergy, with the common goal of increasing the trustworthiness of ML models.

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.