-
AISTATS 20222022In many contexts it is useful to predict the number of individuals in some population who will initiate a particular activity during a given period. For example, the number of users who will install a software update, the number of customers who will use a new feature on a website or who will participate in an A/B test. In practical settings, there is heterogeneity amongst individuals with regard to the
-
The Web Conference 20222022A/B tests serve the purpose of reliably identifying the effect of changes introduced in online services. It is common for online platforms to run a large number of simultaneous experiments by splitting incoming user traffic randomly in treatment and control groups. Despite a perfect randomization between different groups, simultaneous experiments can interact with each other and create a negative impact
-
ICML 2022, UAI 2022 Workshop on Advances in Causal Inference2022We study the problem of observational causal inference with continuous treatment. We focus on the challenge of estimating the causal response curve for infrequently-observed treatment values. We design a new algorithm based on the framework of entropy balancing which learns weights that directly maximize causal inference accuracy using end-to-end optimization. Our weights can be customized for different
-
The Journal of Finance and Data Science (JFDS)2021We present a simple and effective methodology for the generation of lexicons (word lists) that may be used in natural language scoring applications. In particular, in the finance industry, word lists have become ubiquitous for sentiment scoring. These have been derived from dictionaries such as the Harvard Inquirer and require manual curation. Here, we present an automated approach to the curation of lexicons
-
The Journal of Financial Data Science Summer2021The authors enhance pretrained language models with Securities and Exchange Commission filings data to create better language representations for features used in a predictive model. Specifically, they train RoBERTa class models with additional financial regulatory text, which they denote as a class of RoBERTa-Fin models. Using different datasets, the authors assess whether there is material improvement
Related content
-
October 10, 2023The system has expanded from generating peak computation-load forecasts one year in advance to a series of forecasts that include per-minute forecasts several months into the future.
-
October 5, 2023Wharton professor Jessie Handbury lends her expertise to Amazon’s PXTCS Team as an Amazon Visiting Academic.
-
September 19, 2023The new Fulfillment by Amazon system empowers sellers to have more transparency and control over their capacity within Amazon’s fullfilment network by applying market-based principles.
-
June 22, 2023Kanoria and coauthors honored for their paper narrowing the gap between theoretical understanding and practical experience in matching markets.
-
June 2, 2023In a plenary talk, the Berkeley professor and Distinguished Amazon Scholar will argue that AI research should borrow concepts from economics and focus on social collectives.
-
April 14, 2023The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.