Animation shows a flow of dots (historical data) flowing through a CloudTune forecasting icon to generate forecasts, it also includes some detailed shots of pretend peak event forecasts for the US and India.
CloudTune Forecasting, which uses past data to generate forecasts, was initially intended to help US service teams know how much computational capacity they needed for peak events. Since then, improvements have focused on differentiating across teams and regions around the world.

How CloudTune generates forecasts for the Amazon Store

The system has expanded from generating peak computation-load forecasts one year in advance to a series of forecasts that include per-minute forecasts several months into the future.

On what are known as game days to teams inside Amazon, millions of virtual “customers” log on to the Amazon Store to search for items, browse product pages, load shopping carts, and check out as if they were real customers hunting for bargains during a sale such as Prime Day.

Jeff Barr, chief evangelist for AWS, shares what he calls some of the "most interesting and/or mind-blowing metrics" from Prime Day.

“It’s like a fire drill, a planned practice,” said Molly McElheny, a principal technical program manager in Central Reliability Engineering at Amazon. McElheny is responsible for helping to oversee those game days, which her organization runs at strategically chosen times in advance of big sales. Their goal? Make sure the Amazon Store and the many teams who help it run smoothly are ready ahead of time for potentially massive spikes in traffic.

That planned practice draws on forecasts of traffic and loads on Amazon services generated by CloudTune, a system that serves as a communications vehicle between the teams who plan events such as Prime Day and service teams that own infrastructure components and help run the Amazon Store.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

CloudTune Forecasting emanated from Amazon’s central economics team back in 2015 as an improved methodology for capacity planning to handle major events such as Prime Day and Black Friday, explained Oleksiy Mnyshenko, a senior manager and economist at Amazon.

“These events have large peak-to-mean spreads,” he noted. “This means we need to proactively model the expected peak load and continuously assess our AWS capacity needs to support it.”

Demand forecasting

The CloudTune Forecasting system has expanded over the years from generating peak computation-load forecasts one year in advance in the United States to a series of forecasts that range from per-week forecasts up to two years out to per-minute forecasts several months into the future. In addition, those forecasts — which are continually refreshed with new data — are now also generated for a wide variety of Amazon teams and regions around the world.

While the need for specific regional forecasts may be obvious — a Mother’s Day sale forecast in the United States will not be relevant for a Diwali sale in India — many unique service teams that support the Amazon Store also rely on these forecasts.

When you go to the Amazon Store, ... in the background, there are thousands of software systems that together constitute what the experience is, and all of these systems and teams owning them need to be ready for these peak events.
Oleksiy Mnyshenko

One team may be responsible for the home page in a specific region, whereas another team is responsible for the shopping cart experience there, and yet another handles the checkout process. Each team experiences traffic differently and, necessarily, consumes AWS computing power differently. Over time, teams at Amazon have collaborated to improve CloudTune forecasts to be useful for each of those teams and their specific concerns.

“When you go to the Amazon Store, it feels very seamless as you go from searching for something to navigating to details about the product to then checking out, but in the background, there are thousands of software systems that together constitute what the experience is, and all of these systems and teams owning them need to be ready for these peak events,” Mnyshenko said.

In the early years, CloudTune forecasts were geared primarily to help service teams know how much computational capacity they needed for peak events. Since then, improvements have focused on differentiating across teams and regions. As the Amazon Store continued to grow, it became important to extend demand outlook to a two-years-out aggregate forecast per region to help inform decisions for AWS related to computing power, networking, and data center planning.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“A data center is not built in a day,” noted Chunpeng Wang, a senior applied scientist at Amazon who works on the CloudTune forecast team. “Our forecasts are an important input into long-term capacity planning for AWS.”

What’s more, the Amazon Store is not alone in contending with peak events, noted Ben Mildenhall, a senior manager in cloud computing and auto scaling.

“Many AWS external customers have Black Friday and Cyber Monday events as well,” Mildenhall said. “So it’s important we optimize to give all of our customers a great experience.”

CloudTune forecasts provide inputs to AWS to help size infrastructure in a way that maximizes utilization efficiency, noted Mnyshenko. “The way CloudTune specifically helps here is continuously getting better at anticipating the mix of capacity we’re using by generation, by type, by location, so that we can have those conversations and provide this feedback to AWS,” he said.

Granular, flexible, and explainable

Like many demand-forecasting applications, CloudTune is a time-series forecasting system. What’s unique about it is the ability to predict demand at one-minute granularity, noted Mnyshenko. This level of granularity provides insight into patterns such as short-duration spikes in website traffic. Teams use the forecasts as inputs to determine their computing capacity not just for peak events like back to school but also peak times during any given day, week, or month.

“Our comparative advantage is intra-day load predictions at one-minute granularity, allowing us to track actuals during peak events, highlighting these sharp edges where checkout spikes way beyond the natural peak for the period,” Mnyshenko said.

In addition, CloudTune forecasts need to be flexible to accommodate changes in the day and duration of events, such as the evolution of Prime Day from a 24-hour event to a 48-hour event on different days each year.

Related content
Part-time sabbatical plan turns into full-time role for author of five books and more than 170 research articles.

At other times, CloudTune needs to make forecasts for special events such as the launch of popular gaming consoles, which may sell out in a matter of minutes.

“That can create a huge spike, and we have to predict the traffic spike and the order spike,” explained Ebrahim Nasrabadi, a senior manager of applied science who leads the CloudTune Forecasting science team.

The team responsible for CloudTune Forecasting has developed modular and configurable models to address these and other challenges, he noted.

For example, built-in functionality allows the removal of outliers — due to things such as a spike in robot traffic that can decrease or increase actual website traffic and order rate unexpectedly — from predictable seasonal behavior and known calendar events. Since these interruptions do not regularly occur, the tool allows forecast teams to exclude those outliers from data used in the forecast.

“Our models are simple and quite flexible to include additional variables and seasonality,” noted Nasrabadi. The models also take into account significant changes in a trend within a dataset, also known as a slope break.

The CloudTune team also emphasizes forecast models that are explainable.

“We have to be very crisp about what we are doing, very transparent about our expectations,” said Wang.

Hundreds of Amazon Store software teams use these forecasts to help determine their AWS capacity needs for peak events. The better these teams understand the forecasts, the more trust they have in them, noted Mnyshenko.

“We need to be able to explain what goes into the ingredients and, more importantly, what we are doing to reduce the spread in errors,” he said.

Continuous automation

Currently, service teams not yet using automation enhancements take the CloudTune forecasts and translate them into capacity orders for servers through the Amazon Elastic Compute Cloud (Amazon EC2) using many different manual tools and processes, said Doug Smith, a senior technical program manager responsible for delivering improvements and features to the CloudTune toolset.

A key future direction for CloudTune is to continuously enhance these tools and automate as many manual processes as possible, Smith noted.

The world we’re envisioning between our team and CloudTune is one where services teams don’t have to worry about scaling at all.
Molly McElheny

“We’re moving into automation so that we can take our CloudTune forecasts as inputs into these new products that we’re building to provide a hands-off experience,” he said.

And while the game days McElheny’s team runs in advance of these major events will continue apace, she has a vision for the future there as well. Today, she said, the forecasts enable simulations of high-level customer journeys. She’d like to get to a forecast that allows her team to simulate an event down to the types of products customers are ordering when and where.

“This matters because different services get called depending on a lot of different factors. The closer we can simulate the real traffic the better, because we’re actually hitting services with the traffic they expect to see during the event,” McElheny said.

To get there, McElheny, Smith, and their colleagues work together to make sure the forecasts provide the best data for the most realistic simulations.

“The world we’re envisioning between our team and CloudTune is one where services teams don’t have to worry about scaling at all,” McElheny said. “CloudTune does it for them, and then we run a game day, and as we find issues during game day, CloudTune goes and places orders to scale things up for those customers.”

Research areas

Related content

US, CA, Santa Clara
As a Senior Scientist at AWS AI/ML leading the Personalization and Privacy AI teams, you will have deep subject matter expertise in the areas of recommender systems, personalization, generative AI and privacy. You will provide thought leadership on and lead strategic efforts in the personalization of models to be used by customer applications across a wide range of customer use cases. Particular new directions regarding personalizing the output of LLM and their applications will be at the forefront. You will work with product, science and engineering teams to deliver short- and long-term personalization solutions that scale to large number of builders developing Generative AI applications on AWS. You will lead and work with multiple teams of scientists and engineers to translate business and functional requirements into concrete deliverables. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for personalization, privacy and customization for generative AI. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Join us at the cutting edge of Amazon's sustainability initiatives to work on environmental and social advancements to support Amazon's long term worldwide sustainability strategy. At Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, and driven people. The Worldwide Sustainability (WWS) organization capitalizes on Amazon’s scale & speed to build a more resilient and sustainable company. We manage our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation (SSI) is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise. We use this expertise and skills to identify, develop and evaluate the science and innovations necessary for Amazon, customers and partners to meet their long-term sustainability goals and commitments. We’re seeking a Sr. Manager, Applied Scientist for Sustainability and Climate AI to drive technical strategy and innovation for our long-term sustainability and climate commitments through AI & ML. You will serve as the strategic technical advisor to science, emerging tech, and climate pledge partners operating at the Director, VPs, and SVP level. You will set the next generation modeling standards for the team and tackle the most immature/complex modeling problems following the latest sustainability/climate sciences. Staying hyper current with emergent sustainability/climate science and machine learning trends, you'll be trusted to translate recommendations to leadership and be the voice of our interpretation. You will nurture a continuous delivery culture to embed informed, science-based decision-making into existing mechanisms, such as decarbonization strategies, ESG compliance, and risk management. You will also have the opportunity to collaborate with the Climate Pledge team to define strategies based on emergent science/tech trends and influence investment strategy. As a leader on this team, you'll play a key role in worldwide sustainability organizational planning, hiring, mentorship and leadership development. If you see yourself as a thought leader and innovator at the intersection of climate science and tech, we’d like to connect with you. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, WA, Seattle
Does the idea of setting the strategic direction for the product ontology that supports Amazon stores sound exciting? Would it be your dream job to generate, curate and manage product knowledge highlighting all of Amazon's mammoth selection and services from door knobs to books to dishwasher installation to things that haven’t even been invented yet? Do you want to help use data to make finding and understanding Amazon's product space easier? The vision of the Product Knowledge Ontology Team is to provide a standardized, semantically rich, easily discoverable, extensible, and universally applicable body of product knowledge that can be consistently utilized across customer shopping experiences, selling partner listing experiences, and product catalog enrichment. As a Principal Research Scientist you will lead the design and build world-class, intuitive, and comprehensive taxonomy and ontology solutions to optimize product discovery and classification. Key job responsibilities - Work with Product Knowledge leadership team to set strategic direction for ontology platform development - Design and create knowledge models that leverage cutting-edge technology to meet the needs of Amazon customers - Influence across a broad set of internal and external team stakeholders (engineers, designers, program and business leaders) while delivering impactful results for both manufacturers and customers - Evangelize the powerful solutions that ontologies can to offer to solve common and complex business problems - Use Generative Artificial Intelligence (generative AI) models to solve complex schema management use cases at scale - Analyze knowledge performance metrics, customer behavior data and industry trends to make intelligent data-driven decisions on how we can evolve the ontology to provide the best data for customers and internal users - Own business requirements related to knowledge management tools, metrics and processes - Identify and execute the right trade-offs for internal and external customers and systems operating on the ontology - Support a broad community of knowledge builders across Amazon by participating in knowledge sharing and mentorship
US, VA, Arlington
AWS Industry Products (AIP) is an AWS engineering organization chartered to build new AWS products by applying Amazon’s innovation mechanisms along with AWS digital technologies to transform the world, industry by industry. We dive deep with leaders and innovators to solve the problems which block their industries, enabling them to capitalize on new digital business models. Simply put, our goal is to use the skill and scale of AWS to make the benefits of a connected world achievable for all businesses. We are looking for Research Scientists who are passionate about transforming industries through AI. This is a unique opportunity to not only listen to industry customers but also to develop AI and generative AI expertise in multiple core industries. You will join a team of scientists, product managers and software engineers that builds AI solutions in automotive, manufacturing, healthcare, sustainability/clean energy, and supply chain/operations verticals. Leveraging and advancing generative AI technology will be a big part of your charter as we seek to apply the latest advancements in generative AI to industry-specific problems Using your in-depth expertise in machine learning and generative AI and software engineering, you will take the lead on tactical and strategic initiatives to deliver reusable science components and services that differentiate our industry products and solve customer problems. You will be the voice of scientific rigor, delivery, and innovation as you work with our segment teams on AI-driven product differentiators. You will conduct and advance research in AI and generative AI within and outside Amazon. Extensive knowledge of both state-of-the-art and emerging AI methods and technologies is expected. Hands-on knowledge of generative AI, foundation models and commitment to learn and grow in this field are expected. Prior research or industry experience in Sustainability would be a plus. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and models to automate workflows, processes for browser automation, developers and operations teams. As part of this, we are developing services and inference engine for these automation agents; and techniques for reasoning, planning, and modeling workflows. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Develop cutting edge multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
By applying to this position, your application will be considered for all locations we hire for in the United States. Are you interested in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? We are looking for applied scientists capable of using a variety of domain expertise to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Our full-time opportunities are available in, but are not limited to the following domains: • Machine Learning: You will put Machine Learning theory into practice through experimentation and invention, leveraging machine learning techniques (such as random forest, Bayesian networks, ensemble learning, clustering, etc.), and implement learning systems to work on massive datasets in an effort to tackle never-before-solved problems. • Automated Reasoning: AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. Areas of work include: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. • Natural Language Processing and Speech Technologies: You will tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! • Computer Vision and Robotics: You will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for our customers. • Quantum: Quantum computing is rapidly emerging and our customers can the see the potential it has to address their challenges. One of our missions at AWS is to give customers access to the most innovative technology available and help them continuously reinvent their business. Quantum computing is a technology that holds promise to be transformational in many industries. We are adding quantum computing resources to the toolkits of every researcher and developer. If this sounds exciting to you - come build the future with us! Key job responsibilities You will have access to large datasets with billions of images and video to build large-scale systems Analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept Own the design and development of end-to-end systems Write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Web Services Work closely with AWS scientists to develop solutions and deploy them into production Work with diverse groups of people and cross-functional teams to solve complex business problems
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.
US, WA, Seattle
Our mission is to create best-in-class AI agents that seamlessly integrate multimodal inputs like speech, images, and video, enabling natural, empathetic, and adaptive interactions. We develop cutting-edge Large Language Models (LLMs) that leverage advanced architectures, cross-modal learning, interpretability, and responsible AI techniques to provide coherent, context-aware responses augmented by real-time knowledge retrieval. We seek a talented Applied Scientist with expertise in LLMs, speech, audio, NLP, or multimodal learning to pioneer innovations in data simulation, representation, model pre-training/fine-tuning, generation, reasoning, retrieval, and evaluation. The ideal candidate will build scalable solutions for a variety of applications, such as streaming real-time conversational experiences, including multilingual support, talking avatar interactions, customizable personalities, and conversational turn-taking. With a passion for pushing boundaries and rapid experimentation, you'll deliver high-impact solutions from research to customer-facing products and services. Key job responsibilities As an Applied Scientist, you'll leverage your expertise to research novel algorithms and modeling techniques to develop data simulation approaches mimicking real-world interactions with a focus on the speech modality. You'll acquire and curate large, diverse datasets while ensuring privacy, creating robust evaluation metrics and test sets to comprehensively assess LLM performance. Integrating human-in-the-loop feedback, you'll iterate on data selection, sampling, and enhancement techniques to improve the core model performance. Your innovations in data representation, model pre-training/fine-tuning on simulated and real-world datasets, and responsible AI practices will directly impact customers through new AI products and services.
US, NY, New York
Amazon is investing heavily in building a world class advertising business and developing a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses for driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. We are seeking a technical leader for our Supply Science team. This team is within the Sponsored Product team, and works on complex engineering, optimization, econometric, and user-experience problems in order to deliver relevant product ads on Amazon search and detail pages world-wide. The team operates with the dual objective of enhancing the experience of Amazon shoppers and enabling the monetization of our online and mobile page properties. Our work spans ML and Data science across predictive modeling, reinforcement learning (Bandits), adaptive experimentation, causal inference, data engineering. Key job responsibilities Search Supply and Experiences, within Sponsored Products, is seeking a Senior Applied Scientist to join a fast growing team with the mandate of creating new ads experience that elevates the shopping experience for our hundreds of millions customers worldwide. We are looking for a top analytical mind capable of understanding our complex ecosystem of advertisers participating in a pay-per-click model– and leveraging this knowledge to help turn the flywheel of the business. As a Senior Applied Scientist on this team you will: --Act as the technical leader in Machine Learning and drive full life-cycle Machine Learning projects. --Lead technical efforts within this team and across other teams. --Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. --Run A/B experiments, gather data, and perform statistical analysis. --Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. --Work closely with software engineers to assist in productionizing your ML models. --Research new machine learning approaches. --Recruit Applied Scientists to the team and act as a mentor to other scientists on the team. A day in the life The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail, and with an ability to work in a fast-paced, high-energy and ever-changing environment. The drive and capability to shape the direction is a must. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to customers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Why you love this opportunity Amazon is investing heavily in building a world-class advertising business. This team is responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven fundamentally from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities Key job responsibilities As an Applied Scientist II on this team you will: * Lead complex and ambiguous projects to deliver bidding recommendation products to advertisers. * Build machine learning models and utilize data analysis to deliver scalable solutions to business problems. * Perform hands-on analysis and modeling with very large data sets to develop insights that increase traffic monetization and merchandise sales without compromising shopper experience. * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. * Design and run A/B experiments that affect hundreds of millions of customers, evaluate the impact of your optimizations and communicate your results to various business stakeholders. * Work with scientists and economists to model the interaction between organic sales and sponsored content and to further evolve Amazon's marketplace. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new predictive learning approaches for the sponsored products business. * Write production code to bring models into production.